Skip to main content

Advertisement

Log in

Effect of two-step doping pathway on the morphology, structure, composition, and electrochemical performance of three-dimensional N,S-codoped graphene framework

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Heteroatom-doped carbon plays a vital role in the field of energy storage and conversion, and the synthesis of them has intimate relation with doping pathways. In this work, a facile two-step doping pathway, i.e., hydrothermal method followed by thermal annealing process, was employed to prepare annealed three-dimensional N,S-codoped graphene framework (3D A-NSG). The morphology, structure, composition, and related electrochemical performance were all studied. The results showed that A-NSG possessed typical 3D thin nanosheets, much increased specific surface area and structural defects, strengthened conductivity, and optimized N and S configurations (especially for dominated pyridinic N as well as graphitic N and–C–S–C–). As a result, A-NSG presented much better capacitance and oxygen reduction reaction performance than the counterparts. Apparently, our work offers a good guidance on the synthesis of advanced heteroatom-doped carbon materials by adjusting the doping strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. F. Bonaccorso, L. Colombo, G.H. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, and V. Pellegrini: Related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

    Article  CAS  Google Scholar 

  2. F.C. Meng, W.B. Lu, Q.W. Li, J.H. Byun, Y. Oh, and T.W. Chou: Graphene-based fibers: A review. Adv. Mater. 27, 5113 (2015).

    Article  CAS  Google Scholar 

  3. X.J. Zhou, J.L. Qiao, L. Yang, and J.J. Zhang: A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater. 4, 1301523 (2014).

    Article  CAS  Google Scholar 

  4. D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Jeong, H.S. Shin, and M. Chhowalla: High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353, 1413 (2016).

    Article  CAS  Google Scholar 

  5. E. Sadeghinezhad, M. Mehrali, R. Saidur, M. Mehrali, S.T. Latibari, A.R. Akhiani, and H.S.C. Metselaar: A comprehensive review on graphene nanofluids: Recent research, development and applications. Energy Convers. Manage. 111, 466 (2016).

    Article  CAS  Google Scholar 

  6. W.S. Hummers, Jr. and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  7. S. Dou, L. Tao, J. Huo, S.Y. Wang, and L.M. Dai: Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 9, 1320 (2016).

    Article  CAS  Google Scholar 

  8. X. Wang, J. Wang, D.L. Wang, S. Dou, Z.L. Ma, J.H. Wu, L. Tao, A.L. Shen, C.B. Ouyang, Q.H. Liu, and S.Y. Wang: One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chem. Commun. 50, 4839 (2014).

    Article  CAS  Google Scholar 

  9. L. Chen, H.H. Zhou, S.D. Wei, Z.X. Chen, Z. Huang, Z.Y. Huang, C.P. Zhang, and Y.F. Kuang: Facile synthesis of nitrogen-doped unzipped carbon nanotubes and their electrochemical properties. RSC Adv. 5, 8175 (2015).

    Article  CAS  Google Scholar 

  10. D.W. Wang and D.S. Su: Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7, 576 (2014).

    Article  CAS  Google Scholar 

  11. L. Chen, J.R. Feng, H.H. Zhou, C.P. Fu, G.C. Wang, L.M. Yang, C.X. Xu, Z.X. Chen, W.J. Yang, and Y.F. Kuang: Hydrothermal preparation of nitrogen, boron co-doped curved graphene nanoribbons with high dopant amounts for high-performance lithium sulfur battery cathodes. J. Mater. Chem. A 5, 7403 (2017).

    Article  CAS  Google Scholar 

  12. D.F. Yan, Y.X. Li, J. Huo, R. Chen, L.M. Dai, and S.Y. Wang: Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29, 1606459 (2017).

    Article  CAS  Google Scholar 

  13. Y. Xia, R.Y. Fang, Z. Xiao, H. Huang, Y.P. Gan, R.J. Yang, X.H. Lu, C. Liang, J. Zhang, X.Y. Tao, and W.K. Zhang: Confining sulfur in N-doped porous carbon microspheres derived from microalgaes for advanced lithium–sulfur batteries. ACS Appl. Mater. Interfaces 9, 23782 (2017).

    Article  CAS  Google Scholar 

  14. M.B. Li, H.H. Zhou, W.J. Yang, L. Chen, Z. Huang, N.S. Zhang, C.P. Fu, and Y.F. Kuang: Co9S8 nanoparticles embedded in a N,S co-doped graphene-unzipped carbon nanotube composite as a high performance electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 5, 1014 (2017).

    Article  CAS  Google Scholar 

  15. D. Liu, C.P. Fu, N.S. Zhang, H.H. Zhou, and Y.F. Kuang: Three-dimensional porous nitrogen doped graphene hydrogel for high energy density supercapacitors. Electrochim. Acta 213, 291 (2016).

    Article  CAS  Google Scholar 

  16. D. Liu, C.P. Fu, N.S. Zhang, Y.L. Li, H.H. Zhou, and Y.F. Kuang: Porous nitrogen-doped graphene for high energy density supercapacitors in an ionic liquid electrolyte. J. Solid State Electrochem. 21, 759 (2017).

    Article  CAS  Google Scholar 

  17. K.P. Gong, F. Du, Z.H. Xia, M. Durstock, and L.M. Dai: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760 (2009).

    Article  CAS  Google Scholar 

  18. X.L. Li, H.L. Wang, J.T. Robinson, H. Sanchez, G. Diankov, and H.J. Dai: Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131, 15939 (2009).

    Article  CAS  Google Scholar 

  19. D. Higgins, P. Zamani, A.P. Yu, and Z.W. Chen: The application of graphene and its composites in oxygen reduction electrocatalysis: A perspective and review of recent progress. Energy Environ. Sci. 9, 357 (2016).

    Article  CAS  Google Scholar 

  20. H. Wang, T. Maiyalagan, and X. Wang: Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2, 781 (2012).

    Article  CAS  Google Scholar 

  21. Y.Z. Su, Y. Zhang, X.D. Zhuang, S. Li, D.Q. Wu, F. Zhang, and X.L. Feng: Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon 62, 296 (2013).

    Article  CAS  Google Scholar 

  22. Z.S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X.L. Feng, and K. Müllen: Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 24, 5130 (2012).

    Article  CAS  Google Scholar 

  23. Z.S. Wu, Y. Sun, Y.Z. Tan, S.B. Yang, X.L. Feng, and K. Mullen: Three-dimensional graphene-based macro-and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 134, 19532 (2012).

    Article  CAS  Google Scholar 

  24. L. Chen, Z.X. Chen, Z. Huang, Z.Y. Huang, Y.F. Wang, H.X. Li, H.H. Zhou, and Y.F. Kuang: Influence of carbon precursors on the structure, composition, and oxygen reduction reaction performance of nitrogen-doped carbon materials. J. Phys. Chem. C 119, 28757 (2015).

    Article  CAS  Google Scholar 

  25. L.M. Yang, Z.L. Chen, D. Cui, X.B. Luo, B. Liang, L.X. Yang, T. Liu, A.J. Wang, and S.L. Luo: Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol. Chem. Eng. J. 359, 894 (2019).

    Article  CAS  Google Scholar 

  26. G.M. Zhou, E. Paek, G.S. Hwang, and A. Manthiram: Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-co doped graphene sponge. Nat. Commun. 6, 7760 (2015).

    Article  CAS  Google Scholar 

  27. U.N. Maiti, W.J. Lee, J.M. Lee, Y. Oh, J.Y. Kim, J.E. Kim, J. Shim, T.H. Han, and S.O. Kim: 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater. 26, 40 (2014).

    Article  CAS  Google Scholar 

  28. Z.W. Chen, D. Higgins, A.P. Yu, L. Zhang, and J.J. Zhang: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167 (2011).

    Article  CAS  Google Scholar 

  29. Z. Huang, Z.W. Liao, W.J. Yang, H.H. Zhou, C.P. Fu, Y. Gong, L. Chen, and Y.F. Kuang: Different types of nitrogen species in nitrogen-doped carbon material: the formation mechanism and catalytic role on oxygen reduction reaction. Electrochim. Acta 245, 957 (2017).

    Article  CAS  Google Scholar 

  30. Z.H. Sheng, L. Shao, J.J. Chen, W.J. Bao, F.B. Wang, and X.H. Xia: Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5, 4350 (2011).

    Article  CAS  Google Scholar 

  31. Z.Y. Lin, G. Waller, Y. Liu, M.L. Liu, and C.P. Wong: Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2, 884 (2012).

    Article  CAS  Google Scholar 

  32. B. Zheng, J. Wang, F.B. Wang, and X.H. Xia: Synthesis of nitrogen doped graphene with high electrocatalytic activity toward oxygen reduction reaction. Electrochem. Commun. 28, 24 (2013).

    Article  CAS  Google Scholar 

  33. J. Liang, Y. Jiao, M. Jaroniec, and S.Z. Qiao: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 51, 11496 (2012).

    Article  CAS  Google Scholar 

  34. S.T. Lu, Y. Chen, X.H. Wu, Z.D. Wang, and Y. Li: Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading. Sci. Rep. 4, 4629 (2012).

    Article  CAS  Google Scholar 

  35. B.H. He, G.Y. Li, L. Chen, Z.G. Chen, M.J. Jing, M.J. Zhou, N.B. Zhou, J.H. Zeng, and Z.H. Hou: A facile N doping strategy to prepare mass-produced pyrrolic N-enriched carbon fibers with enhanced lithium storage properties. Electrochim. Acta 278, 106 (2018).

    Article  CAS  Google Scholar 

  36. L. Chen, H.H. Zhou, C.P. Fu, Z.X. Chen, C.X. Xu, and Y.F. Kuang: Chemical modification of pristine carbon nanotubes and their exploitation as the carbon hosts for lithium–sulfur batteries. Int. J. Hydrogen Energy 41, 21850 (2016).

    Article  CAS  Google Scholar 

  37. Z.H. Wen, X.C. Wang, S. Mao, Z. Bo, H. Kim, S.M. Cui, G.H. Lu, X.L. Feng, and J.H. Chen: Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv. Mater. 24, 5610 (2012).

    Article  CAS  Google Scholar 

  38. S. Chen, J.W. Zhu, X.D. Wu, Q.F. Han, and X. Wang: Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822 (2010).

    Article  CAS  Google Scholar 

  39. L.T. Qu, Y. Liu, J.B. Baek, and L.M. Dai: Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321 (2010).

    Article  CAS  Google Scholar 

  40. Y.J. Li, J.M. Fan, M.S. Zheng, and Q.F. Dong: A novel synergistic composite with multi-functional effects for high-performance Li–S batteries. Energy Environ. Sci. 9, 1998 (2016).

    Article  CAS  Google Scholar 

  41. H.Y. Zhao, C.H. Sun, Z. Jin, D.W. Wang, X.C. Yan, Z.G. Chen, G.S. Zhu, and X.D. Yao: Carbon for the oxygen reduction reaction: A defect mechanism. J. Mater. Chem. A 3, 11736 (2015).

    Article  CAS  Google Scholar 

  42. D.H. Li, Y. Jia, G.J. Chang, J. Chen, H.W. Liu, J.C. Wang, Y.F. Hu, Y.Z. Xia, D.J. Yang, and X.D. Yao: A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 4, 2345 (2018).

    Article  CAS  Google Scholar 

  43. L. Chen, Z.X. Chen, Z. Huang, Y.F. Wang, H.H. Zhou, and Y.F. Kuang: A nitrogen-doped unzipped carbon nanotube/sulfur composite as an advanced cathode for lithium–sulfur batteries. New J. Chem. 39, 8901 (2015).

    Article  CAS  Google Scholar 

  44. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, and J.W. Choi: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 2472 (2011).

    Article  CAS  Google Scholar 

  45. L. Chen, Z.G. Chen, Y.F. Kuang, C.X. Xu, L.M. Yang, M.J. Zhou, B.H. He, M.J. Jing, Z. Li, F.Y. Li, Z.X. Chen, and Z.H. Hou: Edge-rich quasi-mesoporous nitrogen-doped carbon framework derived from palm tree bark hair for electrochemical applications. ACS Appl. Mater. Interfaces 10, 27047 (2018).

    Article  CAS  Google Scholar 

  46. X. Wang, Z. Zhang, Y.H. Qu, Y.Q. Lai, and J. Li: Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries. J. Power Sources 256, 361 (2014).

    Article  CAS  Google Scholar 

  47. Z. Yang, Z. Yao, G.F. Li, G.Y. Fang, H.G. Nie, Z. Liu, X.M. Zhou, X.A. Chen, and S.M. Huang: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6, 205 (2012).

    Article  CAS  Google Scholar 

  48. W.J. Zhang, Z.T. Chen, X.L. Guo, K. Jin, Y.X. Wang, L. Li, Y. Zhang, Z.M. Wang, L.T. Sun, and T. Zhang: N/S co-doped three-dimensional graphene hydrogel for high performance supercapacitor. Electrochim. Acta 278, 51 (2018).

    Article  CAS  Google Scholar 

  49. L.F. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C.H. Tang, H. Gong, Z.X. Shen, J.Y. Lin, and R.S. Ruoff: Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5, 7936 (2012).

    Article  CAS  Google Scholar 

  50. Z.Y. Sui, Y.N. Meng, P.W. Xiao, Z.Q. Zhao, Z.X. Wei, and B.X. Han: Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl. Mater. Interfaces 7, 1431 (2015).

    Article  CAS  Google Scholar 

  51. G.X. Xin, M.M. Wang, W.H. Zhang, J.L. Song, and B.W. Zhang: Preparation of high-capacitance N,S co-doped carbon nanospheres with hierarchical pores as supercapacitors. Electrochim. Acta 8, 137 (2018).

    Google Scholar 

  52. W.J. Yang, H.H. Zhou, Z. Huang, H.X. Li, C.P. Fu, L. Chen, M.B. Li, S.S. Liu, and Y.F. Kuang: In situ growth of single-stranded like poly(o-phenylenediamine) onto graphene for high performance supercapacitors. Electrochim. Acta 245, 41 (2017).

    Article  CAS  Google Scholar 

  53. Z.Y. Lin, M. Song, Y. Ding, Y. Liu, M.L. Liu, and C. Wong: Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction. Phys. Chem. Chem. Phys. 14, 3381 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51804116, 51772092, and 51873059), Natural Science Foundation of Hunan Province, China (Grant Nos. 2018JJ3207 and 2017JJ2103), Hunan Province College Students Research Learning and Innovative Experiment Project (Grant No. 716). Prof. Zhaohui Hou, Wenyuan Xu, and Yong Tao as well as Miss Yajing Li were appreciated for their experiment guidance and manuscript polishment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Chen or Yafei Kuang.

Supplementary Material

43578_2019_34121993_MOESM1_ESM.doc

Supplementary information: Effect of two-step doping pathway on the morphology, structure, composition and electrochemical performance of three-dimensional N, S-co-doped graphene framework (approximately 2.94 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Shi, M., He, B. et al. Effect of two-step doping pathway on the morphology, structure, composition, and electrochemical performance of three-dimensional N,S-codoped graphene framework. Journal of Materials Research 34, 1993–2002 (2019). https://doi.org/10.1557/jmr.2019.107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.107

Navigation