Interfacial plasticity governs strain delocalization in metallic nanoglasses


Intrinsic size effects in nanoglass plasticity have been connected to the structural length scales imposed by the interfacial network, and control over this behavior is critical to designing amorphous alloys with improved mechanical response. In this paper, atomistic simulations are employed to probe strain delocalization in nanoglasses with explicit correlation to the interfacial characteristics and length scales of the amorphous grain structure. We show that strength is independent of grain size under certain conditions, but scales with the excess free volume and degree of short-range ordering in the interfaces. Structural homogenization upon annealing of the nanoglasses increases their strength toward the value of the bulk metallic glass; however, continued partitioning of strain to the interfacial regions inhibits the formation of a primary shear band. Intrinsic size effects in nanoglass plasticity thus originate from biased plastic strain accumulation within the interfacial regions, which will ultimately govern strain delocalization and homogenous flow in nanoglasses.

This is a preview of subscription content, access via your institution.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:


  1. 1.

    J. Jing, A. Kramer, R. Birringer, H. Gleiter, and U. Gonser: Modified atomic-structure in a Pd–Fe–Si nanoglass—A mossbauer study. J. Non-Cryst. Solids 113, 167 (1989).

    CAS  Article  Google Scholar 

  2. 2.

    H. Gleiter: Nanoglasses: A new kind of noncrystalline materials. Beilstein J. Nanotechnol. 4, 517 (2013).

    Article  CAS  Google Scholar 

  3. 3.

    J.X. Fang, U. Vainio, W. Puff, R. Wurschum, X.L. Wang, D. Wang, M. Ghafari, F. Jiang, J. Sun, H. Hahn, and H. Gleiter: Atomic structure and structural stability of Sc75Fe25 nanoglasses. Nano Lett. 12, 458 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    N. Chen, D.V. Louzguine-Luzgin, G.Q. Xie, P. Sharma, J.H. Perepezko, M. Esashi, A.R. Yavari, and A. Inoue: Structural investigation and mechanical properties of a representative of a new class of materials: Nanograined metallic glasses. Nanotechnology 24, 045610 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    N. Chen, R. Frank, N. Asao, D.V. Louzguine-Luzgin, P. Sharma, J.Q. Wang, G.Q. Xie, Y. Ishikawa, N. Hatakeyama, Y.C. Lin, M. Esashi, Y. Yamamoto, and A. Inoue: Formation and properties of Au-based nanograined metallic glasses. Acta Mater. 59, 6433 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    C. Guo, Y. Fang, B. Wu, S. Lan, G. Peng, X-l. Wang, H. Hahn, H. Gleiter, and T. Feng: Ni–P nanoglass prepared by multi-phase pulsed electrodeposition. Mater. Res. Lett. 5, 293 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Q.P. Cao, J.W. Liu, K.J. Yang, F. Xu, Z.Q. Yao, A. Minkow, H.J. Fecht, J. Ivanisenko, L.Y. Chen, X.D. Wang, S.X. Qu, and J.Z. Jiang: Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass. Acta Mater. 58, 1276 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    H. Shao, Y. Xu, B. Shi, C. Yu, H. Hahn, H. Gleiter, and J. Li: High density of shear bands and enhanced free volume induced in Zr70Cu20Ni10 metallic glass by high-energy ball milling. J. Alloys Compd. 548, 77 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Ritter, D. Sopu, H. Gleiter, and K. Albe: Structure, stability and mechanical properties of internal interfaces in Cu64Zr36 nanoglasses studied by MD simulations. Acta Mater. 59, 6588 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    O. Adjaoud and K. Albe: Interfaces and interphases in nanoglasses: Surface segregation effects and their implications on structural properties. Acta Mater. 113, 284 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    O. Adjaoud and K. Albe: Microstructure formation of metallic nanoglasses: Insights from molecular dynamics simulations. Acta Mater. 145, 322 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    R. Witte, T. Feng, J.X. Fang, A. Fischer, M. Ghafari, R. Kruk, R.A. Brand, D. Wang, H. Hahn, and H. Gleiter: Evidence for enhanced ferromagnetism in an iron-based nanoglass. Appl. Phys. Lett. 103, 073106 (2013).

    Article  CAS  Google Scholar 

  13. 13.

    N. Chen, D. Wang, T. Feng, R. Kruk, K-F. Yao, D.V. Louzguine-Luzgin, H. Hahn, and H. Gleiter: A nanoglass alloying immiscible Fe and Cu at the nanoscale. Nanoscale 7, 6607 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    J.Q. Wang, N. Chen, P. Liu, Z. Wang, D.V. Louzguine-Luzgin, M.W. Chen, and J.H. Perepezko: The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater. 79, 30 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    X.L. Wang, F. Jiang, H. Hahn, J. Li, H. Gleiter, J. Sun, and J.X. Fang: Plasticity of a scandium-based nanoglass. Scr. Mater. 98, 40 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    F.C. Li, T.Y. Wang, Q.F. He, B.A. Sun, C.Y. Guo, T. Feng, and Y. Yang: Micromechanical mechanism of yielding in dual nano-phase metallic glass. Scr. Mater. 154, 186 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    H. Gleiter, T. Schimmel, and H. Hahn: Nanostructured solids—From nano-glasses to quantum transistors. Nano Today 9, 17 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    C.A. Schuh and T.G. Nieh: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    D. Sopu, Y. Ritter, H. Gleiter, and K. Albe: Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations. Phys. Rev. B 83, 100202 (2011).

    Article  CAS  Google Scholar 

  21. 21.

    S. Adibi, P.S. Branicio, Y-W. Zhang, and S.P. Joshi: Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses. J. Appl. Phys. 116, 043522 (2014).

    Article  CAS  Google Scholar 

  22. 22.

    B. Cheng and J.R. Trelewicz: Controlling interface structure in nanoglasses produced through hydrostatic compression of amorphous nanoparticles. Phys. Rev. Mater. 3, 035602 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    C.C. Wang, J. Ding, Y.Q. Cheng, J.C. Wan, L. Tian, J. Sun, Z.W. Shan, J. Li, and E. Ma: Sample size matters for Al88Fe7Gd5 metallic glass: Smaller is stronger. Acta Mater. 60, 5370 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    M. Ghidelli, S. Gravier, J.J. Blandin, P. Djemia, F. Mompiou, G. Abadias, J.P. Raskin, and T. Pardoen: Extrinsic mechanical size effects in thin ZrNi metallic glass films. Acta Mater. 90, 232 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    G. Kumar, A. Desai, and J. Schroers: Bulk metallic glass: The smaller the better. Adv. Mater. 23, 461 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    X. Wang, F. Jiang, H. Hahn, J. Li, H. Gleiter, J. Sun, and J. Fang: Sample size effects on strength and deformation mechanism of Sc75Fe25 nanoglass and metallic glass. Scr. Mater. 116, 95 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    D. Şopu and K. Albe: Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu–Zr nanoglasses. Beilstein J. Nanotechnol. 6, 537 (2015).

    Article  CAS  Google Scholar 

  28. 28.

    S. Adibi, Z-D. Sha, P.S. Branicio, S.P. Joshi, Z-S. Liu, and Y-W. Zhang: A transition from localized shear banding to homogeneous superplastic flow in nanoglass. Appl. Phys. Lett. 103, 211905 (2013).

    Article  CAS  Google Scholar 

  29. 29.

    S. Adibi, P.S. Branicio, and S.P. Joshi: Suppression of shear banding and transition to necking and homogeneous flow in nanoglass nanopillars. Sci. Rep. 5, 15611 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    O. Franke, D. Leisen, H. Gleiter, and H. Hahn: Thermal and plastic behavior of nanoglasses. J. Mater. Res. 29, 1210 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    E.D. Cubuk, R.J.S. Ivancic, S.S. Schoenholz, D.J. Strickland, A. Basu, Z.S. Davidson, J. Fontaine, J.L. Hor, Y-R. Huang, Y. Jiang, N.C. Keim, K.D. Koshigan, J.A. Lefever, T. Liu, X-G. Ma, D.J. Magagnosc, E. Morrow, C.P. Ortiz, J.M. Rieser, A. Shavit, T. Still, Y. Xu, Y. Zhang, K.N. Nordstrom, P.E. Arratia, R.W. Carpick, D.J. Durian, Z. Fakhraai, D.J. Jerolmack, D. Lee, J. Li, R. Riggleman, K.T. Turner, A.G. Yodh, D.S. Gianola, and A.J. Liu: Structure–property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Y.Q. Cheng, A.J. Cao, H.W. Sheng, and E. Ma: Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history. Acta Mater. 56, 5263 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    J. Schiotz, T. Vegge, F.D. Di Tolla, and K.W. Jacobsen: Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 60, 11971 (1999).

    CAS  Article  Google Scholar 

  34. 34.

    B. Cheng and J.R. Trelewicz: Design of crystalline-amorphous nanolaminates using deformation mechanism maps. Acta Mater. 153, 314 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    A.S. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).

    CAS  Article  Google Scholar 

  36. 36.

    Y.F. Shi and M.L. Falk: Atomic-scale simulations of strain localization in three-dimensional model amorphous solids. Phys. Rev. B 73, 214201 (2006).

    Article  CAS  Google Scholar 

  37. 37.

    S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    CAS  Article  Google Scholar 

  38. 38.

    M.I. Mendelev, D.J. Sordelet, and M.J. Kramer: Using atomistic computer simulations to analyze X-ray diffraction data from metallic glasses. J. Appl. Phys. 102, 043501 (2007).

    Article  CAS  Google Scholar 

  39. 39.

    Y.Q. Cheng, H.W. Sheng, and E. Ma: Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys. Rev. B 78, 014207 (2008).

    Article  CAS  Google Scholar 

  40. 40.

    F. Shimizu, S. Ogata, and J. Li: Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans. 48, 2923 (2007).

    CAS  Article  Google Scholar 

  41. 41.

    Y.Q. Cheng, A.J. Cao, and E. Ma: Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition. Acta Mater. 57, 3253 (2009).

    CAS  Article  Google Scholar 

  42. 42.

    A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

Download references


Support for this work was provided through the National Science Foundation under Award 1554411. The authors would like to thank Stony Brook Research Computing and Cyberinfrastructure and the Institute for Advanced Computational Science at Stony Brook University for access to the high-performance SeaWulf computing system, which was made possible by National Science Foundation Award 1531492. The authors also gratefully acknowledge the use of computing resources at the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility at Brookhaven National Laboratory under Contract No. DE-SC0012704.

Author information



Corresponding author

Correspondence to Jason R. Trelewicz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, B., Trelewicz, J.R. Interfacial plasticity governs strain delocalization in metallic nanoglasses. Journal of Materials Research 34, 2325–2336 (2019).

Download citation