Luminogen-functionalized mesoporous SBA-15 for fluorescent detection of antibiotic cefalexin


A novel luminogen-functionalized SBA-15, denoted as SNT, was developed by incorporating tris(4-bromophenyl)amine (TBPA) into SBA-15 via a “fixation-induced emission” strategy. The emission of TBPA on the matrix of SBA-15 was greatly enhanced, making the SNT possible as a fluorescence sensor. Cefalexin, a typical antibiotic, was chosen as the model analyte to be assayed and sensitive detection performance was achieved. This is the first time for cefalexin to be detected by a fluorescent method. Moreover, the SNT can be recycled by simply washing with proper solvents then used for next detection. This work provides a strategy to greatly improve the emission characteristics of fluorophores, even if a mediocre small fluorophore. It can be extended to design practical fluorescent sensors with high performance and recyclability by this strategy.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6


  1. 1.

    G.D. Wright: Solving the antibiotic crisis. ACS Infect. Dis. 1, 80 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    J.F. Tremblay: Spotlight grows on antibiotic pollution. C&EN Global Enterp. 95, 18 (2017).

    Google Scholar 

  3. 3.

    R. Gothwal and T. Shashidhar: Antibiotic pollution in the environment: A review. Clean.–Soil, Air, Water 43, 479 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    W.H. Li, L.H. Gao, Y.L. Shi, J. Liu, and Y. Cai: Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China. Environ. Sci.: Processes Impacts 17, 1611 (2015).

    CAS  Google Scholar 

  5. 5.

    L.Y. Lan, Y. Yao, J.F. Ping, and Y.B. Ying: Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens. Bioelectron. 91, 504 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Yang, S. Yin, Y.X. Li, D. Lu, J. Zhang, and C.J. Sun: Application of aptamers in detection and chromatographic purification of antibiotics in different matrices. TrAC Trends Anal. Chem. 95, 1 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    L.Y. Zhou, N. Gan, Y. Zhou, T.H. Li, Y.T. Cao, and Y.J. Chen: A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probe. Talanta 167, 544 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Z.H. Wang, R.C. Beier, and J.Z. Shen: Immunoassays for the detection of macrocyclic lactones in food matrices—A review. Trac. Trends Anal. Chem. 92, 42 (2017).

    Article  Google Scholar 

  9. 9.

    Y.F. Wang, T.B. Zhang, and X.J. Liang: Aggregation-induced emission: Lighting up cells, revealing life. Small 12, 6451 (2016).

    Article  Google Scholar 

  10. 10.

    H. Wang, E.G. Zhao, J.W.Y. Lam, and B.Z. Tang: AIE luminogens: Emission brightened by aggregation. Mater. Today 18, 365 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Y.N. Hong, J.W.Y. Lam, and B.Z. Tang: Aggregation-induced emission. Chem. Soc. Rev. 40, 5361 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    J.D. Luo, Z.L. Xie, J.W.Y. Lam, L. Cheng, H. Chen, C. Qiu, H.S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B.Z. Tang: Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 18, 1740 (2001).

    Article  Google Scholar 

  13. 13.

    H.P. Shi, D.H. Xin, X.G. Gu, P.F. Zhang, H.R. Peng, S.M. Chen, G.W. Lin, Z.J. Zhao, and B.Z. Tang: The synthesis of novel AIE emitters with the triphenylethene-carbazole skeleton and para-/meta-substituted arylboron groups and their application in efficient non-doped OLEDs. J. Mater. Chem. C 4, 1228 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    S.W. Gong, Q.S. Liu, X.Q. Wang, B. Xia, Z.P. Liu, and W.J. He: AIE-active organoboron complexes with highly efficient solid-state luminescence and their application as gas sensitive materials. Dalton Trans. 44, 14063 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    X.Y. Zhang, K. Wang, M.Y. Liu, X.Q. Zhang, L. Tao, Y.W. Chen, and Y. Wei: Polymeric AIE-based nanoprobes for biomedical applications: Recent advances and perspectives. Nanoscale 7, 11486 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Wang, H. Arandiyan, J. Scott, A. Bagheri, H.X. Dai, and R. Amal: Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: A review. J. Mater. Chem. A 5, 8825 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    X.Y. Zhang, X.Q. Zhang, S.Q. Wang, M. Liu, Y. Zhang, L. Tao, and Y. Wei: Facile incorporation of aggregation-induced emission materials into mesoporous silica nanoparticles for intracellular imaging and cancer therapy. ACS Appl. Mater. Interfaces 5, 1943 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Z.C. Hu, B.J. Deibert, and J. Li: Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43, 5815 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    J. Wei, Z.K. Sun, W. Luo, Y. Li, A.A. Elzatahry, A.M. Al-Enizi, Y. Deng, and D. Zhao: New insight into the synthesis of large-pore ordered mesoporous materials. J. Am. Chem. Soc. 139, 1706 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    D.D. Li, J.H. Yu, and R.R. Xu: Mesoporous silica functionalized with an AIE luminogen for drug delivery. Chem. Commun. 47, 11077 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    D.D. Li, J.Z. Liu, R.T.K. Kwok, Z. Liang, B.Z. Tang, and J.H. Yu: Supersensitive detection of explosives by recyclable AIE luminogen-functionalized mesoporous materials. Chem. Commun. 48, 7167 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Z.Y. Fan, D.D. Li, X. Yu, Y.P. Zhang, Y. Cai, J.J. Jin, and J.H. Yu: AIE luminogen-functionalized hollow mesoporous silica nanospheres for drug delivery and cell imaging. Chem.–Eur. J. 22, 3681 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    C.L. Miao, D.D. Li, Y.P. Zhang, J.H. Yu, and R.R. Xu: AIE luminogen functionalized mesoporous silica nanoparticles as efficient fluorescent sensor for explosives detection in water. Microporous Mesoporous Mater. 196, 46 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    M. Zhang, G.X. Feng, Z.G. Song, Y-P. Zhou, H-Y. Chao, D.Q. Yuan, T.Y.T. Tristan, Z.G. Guo, Z.G. Hu, B.Z. Tang, B. Liu, and D. Zhao: Two-dimensional metal-organic framework with wide channels and eesponsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 136, 7241 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    M. Wang, G.X. Zhang, D.Q. Zhang, D. Zhu, and B.Z. Tang: Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Mater. Chem. 20, 1858 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    N. Niamnont, N. Kimpitak, K. Wongravee, P. Rashatasakhon, K.K. Baldridge, J.S. Sieqel, and M. Sukwattanasinitt: Tunable star-shaped triphenylamine fluorophores for fluorescence quenching detection and identification of nitro-aromatic explosives. Chem. Commun. 49, 780 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    X.Q. Zhang, X.Y. Zhang, L. Tao, Z.G. Chi, J.R. Xu, and Y. Wei: Aggregation induced emission-based fluorescent nanoparticles: Fabrication methodologies and biomedical applications. J. Mater. Chem. B 2, 4398 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    L.L. Yan, Y. Zhang, B. Xu, and W. Tian: Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 8, 2471 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    S.K. Shukla and M.A. Quraishi: Cefalexin drug: A new and efficient corrosion inhibitor for mild steel in hydrochloric acid solution. Mater. Chem. Phys. 120, 142 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    A.S.M. Chong and X.S. Zhao: Functionalization of SBA-15 with APTES and characterization of functionalized materials. J. Phys. Chem. B 107, 12650 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    A.B. Chen, Y.F. Yu, R.J. Wang, Y. Yu, W. Zhang, P. Tang, and D. Ma: Nitrogen-doped dual mesoporous carbon for the selective oxidation of ethylbenzene. Nanoscale 7, 14684 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    S.L. Deng, T.L. Chen, W.L. Chien, and J.L. Hong: Aggregation-enhanced emission in fluorophores containing pyridine and triphenylamine terminals: Restricted molecular rotation and hydrogen-bond interaction. J. Mater. Chem. C 2, 651 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    D.Y. Zhao, J.Y. Sun, Q.Z. Li, and G.D. Stucky: Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12, 275 (2000).

    CAS  Article  Google Scholar 

  34. 34.

    V.S. Marakatti and S.C. Peter: Nickel-antimony nanoparticles confined in SBA-15 as highly efficient catalysts for the hydrogenation of nitroarenes. New J. Chem. 40, 5448 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    M. Thommes, B. Smarsly, M. Groenewolt, P.I. Ravikovitch, and A.V. Neimark: Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro-and mesoporous silicas. Langmuir 22, 756 (2006).

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (21676070), Hebei Natural Science Foundation (B2015208109), Hebei Training Program for Talent Project (A201500117), Hebei One Hundred-Excellent Innovative Talent Program (III) (SLRC2017034), Hebei Science and Technology Project (17214304D), and the Excellent Going Abroad Experts’ Training Program in Hebei Province.

Author information



Corresponding authors

Correspondence to Lei Liu or Senlin Hou or Aibing Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Fu, X., Zhang, H. et al. Luminogen-functionalized mesoporous SBA-15 for fluorescent detection of antibiotic cefalexin. Journal of Materials Research 33, 1442–1448 (2018).

Download citation