Hierarchical aloe-like SnO2 nanoflowers and their gas sensing properties


Unique SnO2 monoflowers with an aloe-like morphology were successfully synthesized via a one-step hydrothermal method. The structural, chemical, and physical characteristics were investigated. The results exhibited that the as-prepared sample was assembled by triangle rutile SnO2 nanoslices with rough surfaces. A possible crystal growth and nanostructure assembling mechanism was proposed. The Raman peaks in 171, 235, and 211 cm−1 proved that a large amount of oxygen defects existed inside the sample, which might narrow the band gap from 3.6 eV of pure SnO2 to 2.7 eV of the sample. The sensor fabricated by aloe-like SnO2 nanostructures exhibited an excellent response and selectivity to ethanol. The developed sensor can detect ethanol as low as 10 ppm at 360 °C. The prepared aloe-like SnO2 microflower sensor exhibited a gas sensing response of about 7.46 when exposed to 100 ppm of ethanol gas at 360 °C, which was probably related to more numerous defects and thinner structure of aloe-like SnO2.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4


  1. 1.

    K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant: Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators, B 160, 580 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    G.F. Fine, L.M. Cavanagh, A. Afonja, and R. Binions: Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10, 5469 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Y. Yan, T. Chen, Y. Zou, and Y. Wang: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Y. Duan, S. Song, B. Cheng, J. Yu, and C. Jiang: Effects of hierarchical structure on the performance of tin oxide-supported platinum catalyst for room-temperature formaldehyde oxidation. Chin. J. Catal 38, 199 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Wang, T. Liu, Q. Huang, C. Wu, and D. Shan: Synthesis and their photocatalytic properties of Ni-doped ZnO hollow microspheres. J. Mater. Res. 31, 2317 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    X. Chen, L. Liu, and F. Huang: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, and G. Sberveglieri: Nanostructured metal oxide gas sensors, a survey of applications carried out at sensor lab, Brescia (Italy) in the security and food quality fields. Sensors 12, 17023 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    R.A. Rani, A.S. Zoolfakar, J.Z. Ou, M.R. Field, M. Austin, and K. Kalantar-zadeh: Nanoporous Nb2O5 hydrogen gas sensor. Sens. Actuators, B 176, 149 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Q. Jia, H. Ji, Y. Zhang, Y. Chen, X. Sun, and Z. Jin: Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J. Hazard. Mater. 276, 262 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    M.R. Alenezi, S.J. Henley, N.G. Emerson, and S.R.P. Silva: From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6, 235 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    S. Bhatia, N. Verma, and R. Bedi: Sn-doped ZnO nanopetal networks for efficient photocatalytic degradation of dye and gas sensing applications. Appl. Surf. Sci. 407, 495 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    L. Han, J. Chen, Y. Zhang, Y. Liu, L. Zhang, and S. Cao: Facile synthesis of hierarchical carpet-like WO3 microflowers for high NO2 gas sensing performance. Mater. Lett. 210, 8 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    C. Wang, R. Sun, X. Li, Y. Sun, P. Sun, F. Liu, and G. Lu: Hierarchical flower-like WO3 nanostructures and their gas sensing properties. Sens. Actuators, B 204, 224 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Yang, Y. Liang, G. Wang, L. Liu, C. Yuan, T. Yu, Q. Li, F. Zeng, and G. Gu: Enhanced gas-sensing properties of the hierarchical TiO2 hollow microspheres with exposed high-energy {001} crystal facets. ACS Appl. Mater. Interfaces 7, 24902 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    S.I. Boyadjiev, O. Kéri, P. Bárdos, T. Firkala, F. Gáber, Z.K. Nagy, Z. Baji, M. Takács, and I.M. Szilágyi: TiO2/ZnO and ZnO/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing. Appl. Surf. Sci. 424, 190 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    D. Wei, Z. Huang, L. Wang, X. Chuai, S. Zhang, and G. Lu: Hydrothermal synthesis of Ce-doped hierarchical flower-like In2O3 microspheres and their excellent gas-sensing properties. Sens. Actuators, B 255, 1211 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    X. Xu, P. Zhao, D. Wang, P. Sun, L. You, Y. Sun, X. Liang, F. Liu, H. Chen, and G. Lu: Preparation and gas sensing properties of hierarchical flower-like In2O3 microspheres. Sens. Actuators, B 176, 405 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    P. Sun, C. Wang, X. Zhou, P. Cheng, K. Shimanoe, G. Lu, and N. Yamazoe: Cu-doped α-Fe2O3 hierarchical microcubes: Synthesis and gas sensing properties. Sens. Actuators, B 193, 616 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, and X. Wu: Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interfaces 6, 2174 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    P. Gurunathan, P.M. Ette, and K. Ramesha: Synthesis of hierarchically porous SnO2 microspheres and performance evaluation as Li-ion battery anode by using different binders. ACS Appl. Mater. Interfaces 6, 16556 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    T. Jia, X. Wang, W. Wang, Y. Dong, G. Liao, and Y. Wang: Facile synthesis of SnO2 hollow microspheres and their optical property. J. Wuhan Univ. Technol.-Materials Sci. Ed. 26, 302 (2011).

    Google Scholar 

  22. 22.

    J. Jeong, S-P. Choi, C.I. Chang, D.C. Shin, J.S. Park, B.T. Lee, Y-J. Park, and H-J. Song: Photoluminescence properties of SnO2 thin films grown by thermal CVD. Solid State Commun. 127, 595 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    K. Deng, H. Lu, Z. Shi, Q. Liu, and L. Li: Flexible three-dimensional SnO2 nanowire arrays: Atomic layer deposition-assisted synthesis, excellent photodetectors, and field emitters. ACS Appl. Mater. Interfaces 5, 7845 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    H.H. Niu, S.W. Zhang, R.B. Wang, Z.Q. Guo, X. Shang, W. Gan, S.X. Qin, L. Wan, and J.Z. Xu: Dye-sensitized solar cells employing a multifunctionalized hierarchical SnO2 nanoflower structure passivated by TiO2 nanogranulum. J. Phys. Chem. C 118, 3504 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    H. Zhang and C. Hu: Effective solar absorption and radial microchannels of SnO2 hierarchical structure for high photocatalytic activity. Catal. Commun. 14, 32 (2011).

    Article  CAS  Google Scholar 

  26. 26.

    A. Shanmugasundaram, P. Basak, L. Satyanarayana, and S.V. Manorama: Hierarchical SnO/SnO2 nanocomposites: Formation of in situ p–n junctions and enhanced H2 sensing. Sens. Actuators, B 185, 265 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    S. Wang, J. Yang, H. Zhang, Y. Wang, X. Gao, L. Wang, and Z. Zhu: One-pot synthesis of 3D hierarchical SnO2 nanostructures and their application for gas sensor. Sens. Actuators, B 207, 83 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    T.T. Wang, S.Y. Ma, L. Cheng, X.L. Xu, J. Luo, X.H. Jiang, W.Q. Li, W.X. Jin, and X.X. Sun: Performance of 3D SnO2 microstructure with porous nanosheets for acetic acid sensing. Mater. Lett. 142, 141 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    J. Wei, S. Xue, P. Xie, and R. Zou: Synthesis and photocatalytic properties of different SnO2 microspheres on graphene oxide sheets. Appl. Surf. Sci. 376, 172 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Z. Yanhua, W. Lingling, H. Guifang, C. Yifeng, Z. Xiang, and H. Weiqing: Luminescent and photocatalytic properties of hollow SnO2 nanospheres. Mater. Sci. Eng., B 178, 725 (2013).

    Article  CAS  Google Scholar 

  31. 31.

    J.Y. Bae, J. Park, H.Y. Kim, H.S. Kim, and J.S. Park: Facile route to the controlled synthesis of tetragonal and orthorhombic SnO2 films by mist chemical vapor deposition. ACS Appl. Mater. Interfaces 7, 12074 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    W. Shi, S. Song, and H. Zhang: Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem. Soc. Rev. 42, 5714 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    X. Xia, J. Tu, J. Zhang, X. Wang, W. Zhang, and H. Huang: Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochim. Acta 53, 5721 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    J. Silver, M. Martinez-Rubio, T. Ireland, G. Fern, and R. Withnall: The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors. J. Phys. Chem. B 105, 948 (2001).

    CAS  Article  Google Scholar 

  35. 35.

    S.D. Oosterhout, M.M. Wienk, S.S. Van Bavel, R. Thiedmann, L.J.A. Koster, J. Gilot, J. Loos, V. Schmidt, and R.A. Janssen: The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nat. Mater. 8, 818 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    H. Zhong, Y. Qiu, T. Zhang, X. Li, H. Zhang, and X. Chen: Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO2 to formate. J. Mater. Chem. A 4, 13746 (2016).

    CAS  Google Scholar 

  37. 37.

    E. Leite, I. Weber, E. Longo, and J.A. Varela: A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv. Mater. 12, 965 (2000).

    CAS  Article  Google Scholar 

  38. 38.

    A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits: Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 15, 997 (2003).

    CAS  Article  Google Scholar 

  39. 39.

    E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z.L. Wang: Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002).

    CAS  Article  Google Scholar 

  40. 40.

    Q. Wang, L-S. Zhang, J-F. Wu, W.D. Wang, W-G. Song, and W. Wang: A parallel solid-state NMR and sensor property study on flower-like nanostructured SnO2. J. Phys. Chem. C 114, 22671 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    H. Wang and A.L. Rogach: Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chem. Mater. 26, 123 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    J-H. Lee: Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators, B 140, 319 (2009).

    CAS  Article  Google Scholar 

  43. 43.

    X. Li, J. Yu, and M. Jaroniec: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    D. Xu, W. Shi, C. Xu, S. Yang, H. Bai, C. Song, and B. Chen: Hydrothermal synthesis of 3D Ba5Ta4O15 flower-like microsphere photocatalyst with high photocatalytic properties. J. Mater. Res. 31, 2640 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, and J. Yu: Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 13, 1603938 (2017).

    Article  CAS  Google Scholar 

  46. 46.

    M.A. Stranick and A. Moskwa: SnO2 by XPS. Surf. Sci. Spectra 2, 50 (1993).

    CAS  Article  Google Scholar 

  47. 47.

    Y. He, D. Li, J. Chen, Y. Shao, J. Xian, X. Zheng, and P. Wang: Sn3O4: A novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light. RSC Adv. 4, 1266 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    F. Wang, X. Zhou, J. Zhou, T-K. Sham, and Z. Ding: Observation of single tin dioxide nanoribbons by confocal Raman microspectroscopy. J. Phys. Chem. C 111, 18839 (2007).

    CAS  Article  Google Scholar 

  49. 49.

    J. Geurts, S. Rau, W. Richter, and F. Schmitte: SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies. Thin Solid Films 121, 217 (1984).

    CAS  Article  Google Scholar 

  50. 50.

    J. Scott: Raman spectrum of SnO2. J. Chem. Phys. 53, 852 (1970).

    CAS  Article  Google Scholar 

  51. 51.

    K. Yu, Y. Xiong, Y. Liu, and C. Xiong: Microstructural change of nano-SnO2 grain assemblages with the annealing temperature. Phys. Rev. B 55, 2666 (1997).

    CAS  Article  Google Scholar 

  52. 52.

    A. Dieguez, A. Romano-Rodrıguez, A. Vila, and J. Morante: The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 90, 1550 (2001).

    CAS  Article  Google Scholar 

  53. 53.

    R. Katiyar, P. Dawson, M. Hargreave, and G. Wilkinson: Dynamics of the rutile structure. III. Lattice dynamics, infrared and Raman spectra of SnO2. J. Phys. C Solid State Phys. 4, 2421 (1971).

    CAS  Article  Google Scholar 

  54. 54.

    F. Oba, M. Choi, A. Togo, A. Seko, and I. Tanaka: Native defects in oxide semiconductors: A density functional approach. J. Phys.: Condens. Matter 22, 384211 (2010).

    Google Scholar 

  55. 55.

    W. Fengping, Z. Xingtai, Z. Jigang, S. Tsun-Kong, and D. Zhifeng: Observation of single tin dioxide nanoribbons by confocal Raman microspectroscopy. J. Phys. Chem. C 111, 18839 (2007).

    Article  CAS  Google Scholar 

  56. 56.

    K.S. Sing: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603 (1985).

    CAS  Article  Google Scholar 

  57. 57.

    H.B. Wu, J.S. Chen, X.W. Lou, and H.H. Hng: Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties. J. Phys. Chem. C 115, 24605 (2011).

    CAS  Article  Google Scholar 

  58. 58.

    V.B. Kamble and A.M. Umarji: Defect induced optical bandgap narrowing in undoped SnO2 nanocrystals. AIP Adv. 3, 082120 (2013).

    Article  CAS  Google Scholar 

  59. 59.

    Z. Cao and J.R. Stetter: A selective solid-state gas sensor for halogenated hydrocarbons. Sens. Actuators, B 5, 109 (1991).

    CAS  Article  Google Scholar 

  60. 60.

    X. An, C.Y. Jimmy, Y. Wang, Y. Hu, X. Yu, and G. Zhang: WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 22, 8525 (2012).

    CAS  Article  Google Scholar 

  61. 61.

    A.P. Lee and B.J. Reedy: Temperature modulation in semiconductor gas sensing. Sens. Actuators, B 60, 35 (1999).

    CAS  Article  Google Scholar 

  62. 62.

    N. Yamazoe: New approaches for improving semiconductor gas sensors. Sens. Actuators, B 5, 7 (1991).

    CAS  Article  Google Scholar 

  63. 63.

    X. Xu, J. Zhuang, and X. Wang: SnO2 quantum dots and quantum wires: Controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J. Am. Chem. Soc. 130, 12527 (2008).

    CAS  Article  Google Scholar 

  64. 64.

    R. Rella, A. Serra, P. Siciliano, L. Vasanelli, G. De, A. Licciulli, and A. Quirini: Tin oxide-based gas sensors prepared by the sol–gel process. Sens. Actuators, B 44, 462 (1997).

    CAS  Article  Google Scholar 

  65. 65.

    I. Weber, R. Andrade, E. Leite, and E. Longo: A study of the SnO2·Nb2O5 system for an ethanol vapour sensor: A correlation between microstructure and sensor performance. Sens. Actuators, B 72, 180 (2001).

    CAS  Article  Google Scholar 

  66. 66.

    X. Liu, J. Zhang, X. Guo, S. Wang, and S. Wu: Core–shell α-Fe2O3@SnO2/Au hybrid structures and their enhanced gas sensing properties. RSC Adv. 2, 1650 (2012).

    CAS  Article  Google Scholar 

Download references


We appreciate the financial support of the National Natural Science Foundation of China (Grant No. 61373072).

Author information



Corresponding author

Correspondence to Fengping Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Li, X., Wang, X. et al. Hierarchical aloe-like SnO2 nanoflowers and their gas sensing properties. Journal of Materials Research 33, 1433–1441 (2018). https://doi.org/10.1557/jmr.2018.94

Download citation