Modeling nanoindentation using the Material Point Method

Abstract

A numerical nanoindentation model was developed using the Material Point Method (MPM), which was chosen because it can handle both large deformations and dynamic contact under the indenter. Because of the importance of contact, prior MPM contact methods were enhanced to improve their accuracy for contact detection. Axisymmetric and full 3D simulations investigated the effects of hardening, strain-rate dependent yield properties, and local structure under the indenter. Convergence of load-displacement curves required small cells under the indenter. To reduce computation time, we used an effective nonregular grid, called a tartan grid and describe its implementation. Tartan grids reduced simulation times by an order of magnitude. A series of simulated load-displacement curves were analyzed as “virtual experiments” by standard Oliver-Pharr methods to extract effective modulus and hardness of the indented material. We found that standard analysis methods give results that are affected by hardening parameters and strain-rate dependence of plasticity. Because these parameters are not known during experiments, extracted properties will always have limited accuracy. We describe an approach for extracting more properties and more accurate properties by combining MPM simulations with inverse methods to fit simulation results to entire load-displacement curves.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    CAS  Article  Google Scholar 

  2. 2.

    B. Poon, D. Rittel, and G. Ravichandran: An analysis of nanoindentation in elasto-plastic solids. Int. J. Solid Struct. 45, 6399–6415 (2008).

    Article  Google Scholar 

  3. 3.

    B. Poon, D. Rittel, and G. Ravichandran: An analysis of nanoindentation in linearly elastic solids. Int. J. Solid Struct. 45, 6018–6033 (2008).

    Article  Google Scholar 

  4. 4.

    X. Chen, I. Ashcroft, C. Tuck, Y. He, R. Hague, and R. Wildman: An investigation into the depth and time dependent behavior of UV cured 3D ink jet printed objects. J. Mater. Res. 32, 1407–1420 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    T. Nardi, C. Hammerquist, J.A. Nairn, A. Karimi, J-A.E. Månson, and Y. Leterrier: Nanoindentation of functionally graded polymer nanocomposites: Assessment of the strengthening parameters through experiments and modeling. Front. Mater. 2, 57 (2015).

    Article  Google Scholar 

  6. 6.

    J. Ma, Y. Liu, H. Lu, and R. Komanduri: Multiscale simulation of nanoindentation using the generalized interpolation material point (GIMP) method, dislocation dynamics (DD) and molecular dynamics (MD). Comput. Model. Eng. Sci. 16, 41–55 (2006).

    Google Scholar 

  7. 7.

    S. Bardenhagen, J.E. Guilkey, K. Roessig, J. Brackbill, W. Witzel, and J. Foster: An improved contact algorithm for the material point method and application to stress propagation in granular material. Comput. Model. Eng. Sci. 2, 509–522 (2001).

    Google Scholar 

  8. 8.

    J.A. Nairn: Modeling imperfect interfaces in the material point method using multimaterial methods. Comput. Model. Eng. Sci. 1, 1–15 (2013).

    Google Scholar 

  9. 9.

    J.A. Nairn, S.G. Bardenhagen, and G.S. Smith: Generalized contact and improved frictional heating in the material point method. Comput. Part. Mech. (2017). doi: https://doi.org/10.1007/s40571-017-0168-1.

  10. 10.

    S.G. Bardenhagen and E.M. Kober: The generalized interpolation material point method. Comput. Model. Eng. Sci. 5, 477–496 (2004).

    Google Scholar 

  11. 11.

    D. Sulsky, Z. Chen, and H.L. Schreyer: A particle method for history-dependent materials. Comput. Meth. Appl. Mech. Eng. 118, 179–186 (1994).

    Article  Google Scholar 

  12. 12.

    X. Zhang, Z. Chen, and Y. Liu: The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases (Academic Press, Oxford, U.K., 2016).

    Google Scholar 

  13. 13.

    J.A. Nairn: Numerical simulations of transverse compression and densification in wood. Wood Fiber Sci. 38, 576–591 (2007).

    Google Scholar 

  14. 14.

    P. Perré, G. Almeida, M. Ayouz, and X. Frank: New modelling approaches to predict wood properties from its cellular structure: Image-based representation and meshless methods. Ann. For. Sci. 73, 147–162 (2016).

    Article  Google Scholar 

  15. 15.

    J.A. Nairn: Material point method simulations of transverse fracture in wood with realistic morphologies. Holzforschung 61, 375–381 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    J.E. Guilkey, J.B. Hoying, and J.A. Weiss: Computational modeling of multicellular constructs with the material point method. J. Biomech. 39, 2074–2086 (2006).

    Article  Google Scholar 

  17. 17.

    S. Ganpule, N.P. Daphalapurkar, K.T. Ramesh, A.K. Knutsen, D.L. Pham, P.V. Bayly, and J.L. Prince: A three-dimensional computational human head model that captures live human brain dynamics. J. Neurotrauma 34, 2154–2166 (2017).

    Article  Google Scholar 

  18. 18.

    N.P. Daphalapurkar, J.C. Hanan, N.B. Phelps, H. Bale, and H. Lu: Tomography and simulation of microstructure evolution of a closed-cell polymer foam in compression. Mech. Adv. Mater. Struct. 15, 594–611 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle: A material point method for snow simulation. ACM Trans. Graph. 32, 1–102 (2013).

    Article  Google Scholar 

  20. 20.

    S. Bardenhagen, J. Brackbill, and D. Sulsky: The material-point method for granular materials. Comput. Meth. Appl. Mech. Eng. 187, 529–541 (2000).

    Article  Google Scholar 

  21. 21.

    Y. Wang, H. Beom, M. Sun, and S. Lin: Numerical simulation of explosive welding using the material point method. Int. J. Impact Eng. 38, 51–60 (2011).

    Article  Google Scholar 

  22. 22.

    S. Ma and X. Zhang: Material point method for impact and explosion problems. In Proceedings of International Symposium on Computational Mechanics, Z. Yao, M. Yuan, eds. (Springer, Beijing, China, 2007); pp. 156–166.

    Google Scholar 

  23. 23.

    J.A. Nairn: Material point method calculations with explicit cracks. Comput. Model. Eng. Sci. 4, 649–664 (2003).

    Google Scholar 

  24. 24.

    S.G. Bardenhagen, J.A. Nairn, and H. Lu: Simulation of dynamic fracture with the material point method using a mixed J-integral and cohesive law approach. Int. J. Fract. 170, 49–66 (2011).

    Article  Google Scholar 

  25. 25.

    R. Ambati, X. Pan, H. Yuan, and X. Zhang: Application of material point methods for cutting process simulations. Comput. Mater. Sci. 57, 102–110 (2012).

    Article  Google Scholar 

  26. 26.

    J.A. Nairn: Numerical simulation of orthogonal cutting using the material point method. Eng. Fract. Mech. 149, 262–275 (2015).

    Article  Google Scholar 

  27. 27.

    P.G. Hu, L. Xue, S. Mao, R. Kamakoti, H. Zhao, N. Dittakavi, Z. Wang, Q. Li, K. Ni, and M. Brenner: Material point method applied to fluid-structure interaction (FSI)/aeroelasticity problems. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Orlando, Florida, 2010); pp. 4–7.

  28. 28.

    J.A. Nairn: Material point method (NairnMPM) and finite element analysis (NairnFEA) open-source software (2017). Available at: http://osupdocs.forestry.oregonstate.edu/index.php/Main_Page (accessed March 16, 2018).

  29. 29.

    J.A. Nairn and J.E. Guilkey: Axisymmetric form of the generalized interpolation material point method. Int. J. Numer. Meth. Eng. 101, 127–147 (2015).

    Article  Google Scholar 

  30. 30.

    W. Oliver and G. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    A. Clausner and F. Richter: Usage of the concept of the effectively shaped indenter for the determination of yield stress from berkovich nano-indentation experiments. Eur. J. Mech. Solid. 53, 294–302 (2015).

    Article  Google Scholar 

  32. 32.

    A. Bower: Applied Mechanics of Solids (CRC Press, Boca Raton, Florida, 2009). ISBN: 9781439802489.

    Google Scholar 

  33. 33.

    T. Chudoba and F. Richter: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Technol. 148, 191–198 (2001).

    CAS  Article  Google Scholar 

  34. 34.

    J.E. Jakes, C.R. Frihart, J.F. Beecher, R.J. Moon, and D. Stone: Experimental method to account for structural compliance in nanoindentation measurements. J. Mater. Res. 23, 1113–1127 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    M.R. VanLandingham, J.S. Villarrubia, W.F. Guthrie, and G.F. Meyers: Nanoindentation of polymers: An overview. In Macromolecular Symposia, Vol. 167 (Wiley-Blackwell, Hoboken, New Jersey, 2001); pp. 15–44.

    CAS  Article  Google Scholar 

  36. 36.

    G.R. Johnson and W.H. Cook: A constitutive model and data for metals subjected to large strains, high strain rates and high. In Proceedings of the 7th International Symposium on Ballistics (The Hague, The Netherlands, 1983); pp. 541–547.

  37. 37.

    V. Lemiale, A. Hurmane, and J.A. Nairn: Material point method simulation of equal channel angular pressing involving large plastic strain and contact through sharp corners. Comput. Model. Eng. Sci. 70, 41–66 (2010).

    Google Scholar 

  38. 38.

    A. Sadeghirad, R.M. Brannon, and J. Burghardt: A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int. J. Numer. Meth. Eng. 86, 1435–1456 (2011).

    Article  Google Scholar 

  39. 39.

    C.C. Hammerquist and J.A. Nairn: A new method for material point method particle updates that reduces noise and enhances stability. Comput. Meth. Appl. Mech. Eng. 318, 724–738 (2017).

    Article  Google Scholar 

  40. 40.

    C.M. Mast, P. Arduino, G.R. Miller, and P. Mackenzie-Helnwein: Avalanche and landslide simulation using the material point method: Flow dynamics and force interaction with structures. Comput. Geosci. 18, 817–830 (2014).

    Article  Google Scholar 

  41. 41.

    S. Mao, Q. Chen, D. Li, and Z. Feng: Modeling of free surface flows using improved material point method and dynamic adaptive mesh refinement. J. Eng. Mech. 142, 04015069 (2016).

    Article  Google Scholar 

  42. 42.

    J. Ma: Multiscale simulation using the generalized interpolation material point method, discrete dislocations and molecular dynamics. Ph.D. thesis, Oklahoma State University, Stillwater, Oklahoma, 2006.

    Google Scholar 

  43. 43.

    P-L. Larsson, A. Giannakopoulos, E. Söderlund, D. Rowcliffe, and R. Vestergaard: Analysis of berkovich indentation. Int. J. Solid Struct. 33, 221–248 (1996).

    Article  Google Scholar 

  44. 44.

    R Core Team: R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2016). Available at: https://www.R-project.org/.

    Google Scholar 

  45. 45.

    M. Troyon and S. Lafaye: About the importance of introducing a correction factor in the sneddon relationship for nanoindentation measurements. Philos. Mag. 86, 5299–5307 (2006).

    CAS  Article  Google Scholar 

  46. 46.

    J. Graf: PID Control Fundamentals (Createspace Independent Publishing Platform, 2016). ISBN: 9781535358668.

  47. 47.

    G.M. Pharr and A. Bolshakov: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660–2671 (2002).

    CAS  Article  Google Scholar 

  48. 48.

    G. Fu and L. Cao: On the effective indenter shape used in the analysis of nanoindentation unloading curves. J. Mater. Sci. 40, 2683–2684 (2005).

    CAS  Article  Google Scholar 

  49. 49.

    X. Chen, N. Ogasawara, M. Zhao, and N. Chiba: On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials. J. Mech. Phys. Solid. 55, 1618–1660 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The work was funded by the National Institute of Food and Agriculture (NIFA) of the United States Department of Agriculture (USDA), Grant No. 2013-34638-21483.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John A. Nairn.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hammerquist, C.C., Nairn, J.A. Modeling nanoindentation using the Material Point Method. Journal of Materials Research 33, 1369–1381 (2018). https://doi.org/10.1557/jmr.2018.75

Download citation