Fast mechanochemical synthesis of carbon nanotube-polyaniline hybrid materials


We present a fast method to prepare hybrid materials of polyaniline (PAni) with carbon nanotubes (CNTs, both undoped and nitrogen-doped) by ball milling without solvents or strong oxidants. PAni forms nanoparticles, attached to CNTs in a nanocomposite structure, with the nanotubes well dispersed among the polymer. This is achieved with only a few minutes of ball milling. Raman spectroscopy confirms that PAni was synthesized in its conductive state and suggests a good CNT—PAni interaction, particularly with nitrogen-doped CNTs. We found that water increased polymer yield, which we optimized, together with the nanocomposite conductivity, as function of amount of water and of oxidant (FeCl3). The nanocomposite conductivity is four orders of magnitude higher than that of PAni, for both types of nanotubes. Scanning electron microscopy and X-ray diffraction both show negligible damage to the CNT during this mechanosynthesis procedure, while dry milling and milling CNT in water without aniline does damage nanotubes, indicating that the reaction absorbs most of the mechanical energy.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, and A.J. Hart: Carbon nanotubes: Present and future commercial applications. Science 339, 535–539 (2013).

    Article  CAS  Google Scholar 

  2. 2.

    D.W. Schaefer and R.S. Justice: How nano are nanocomposites? Macromolecular 40, 8501 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis: Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    W.R. Salaneck, I. Lundstrom, W-S. Huang, and A. MacDiarmid: A two-dimensional-surface ‘state diagram’ for polyaniline. Synth. Met. 13, 291 (1986).

    CAS  Article  Google Scholar 

  5. 5.

    P. Zarras and J. Irvin: Electrically active polymers. In Encyclopedia of Polymer Science and Technology, Concise, H.F. Mark, ed. (John Wiley & Sons Inc., Hoboken, New Jersey, 2007); p. 351.

    Google Scholar 

  6. 6.

    W.K. Maser, A.M. Benito, M.A. Callejas, T. Seeger, M.T. Martínez, J. Schreiber, J. Muszinsky, O. Chauvet, Z. Osváth, A.A. Kóos, and L.P. Biró: Synthesis and characterization of new polyaniline/nanotube composites. Mater. Sci. Eng. C 23, 87 (2003).

    Article  Google Scholar 

  7. 7.

    T-M. Wu, Y-W. Lin, and C-S. Liao: Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 43, 734 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    V. Mottaghitalab, G.F. Spinks, and G.G. Wallace: The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers. Synth. Met. 152, 77 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    C.Y. Wang, V. Mottaghitalab, C.O. Too, G.M. Spinks, and G.G. Wallace: Polyaniline and polyaniline–carbon nanotube composite fibres as battery materials in ionic liquid electrolyte. J. Power Sources 163, 1105 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    S.R. Sivakkumar, W.J. Kim, J-A. Choi, D.R. MacFarlane, M. Forsyth, and D-W. Kim: Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J. Power Sources 171, 1062 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    J. Zhang, L-B. Kong, B. Wang, Y-C. Luo, and L. Kang: In situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synth. Met. 159, 260 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    V. Mottaghitalab, G.F. Spinks, and G.G. Wallace: Polyaniline fibres containing single walled carbon nanotubes: Enhanced performance artificial muscles. Synth. Met. 156, 796 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    J. Huang and R.B. Kaner: A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 126, 851 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    L. Meng, Y. Lu, X. Wang, J. Zhang, Y. Duan, and C. Li: Facile synthesis of straight polyaniline nanostick in hydrogel. Macromolecules 40, 2981 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    J. Stejskal, I. Sapurina, M. Trchová, and E.N. Konyushenko: Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 41, 3530 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    R.B. Nasir Baig and R.S. Varma: Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev. 41, 1559 (2012).

    Article  Google Scholar 

  17. 17.

    K. Suemori, Y. Watanabe, and S. Hoshino: Carbon nanotube bundles/polystyrene composites as high-performance flexible thermoelectric materials. Appl. Phys. Lett. 106, 113902 (2015).

    Article  CAS  Google Scholar 

  18. 18.

    E. Enqvist, D. Ramanenka, P.A.A.P. Marques, J. Gracio, and N. Emami: The effect of ball milling time and rotational speed on ultra high molecular weight polyethylene reinforced with multiwalled carbon nanotubes. Polym. Compos. 37, 1128 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    T. Zhai, D. Li, G. Fei, and H. Xia: Piezoresistive and compression resistance relaxation behavior of water blown carbon nanotube/polyurethane composite foam. Composites, Part A 72, 108 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    F. Liu, Y. Wang, K. Li, L. Jiang, X. Wang, X. Shao, B. Zhang, and F. Cui: Graphene oxide/ultrahigh molecular weight polyethylene composites: Ball-milling preparation mechanical performance and biocompatibility effects. Am. J. Biomed. Sci. Eng. 1, 51 (2015).

    Google Scholar 

  21. 21.

    J. Ambrosio-Martín, G. Gorrasi, A. Lopez-Rubio, M.J. Fabra, L.C. Mas, M.A. López-Manchado, and J.M. Lagaron: On the use of ball milling to develop PHBV–graphene nanocomposites (I)—Morphology, thermal properties, and thermal stability. J. Appl. Polym. Sci. 132, 42101 (2015).

    Google Scholar 

  22. 22.

    F. Delogu, G. Gorrasi, and A. Sorrentino: Fabrication of polymer nanocomposites via ball milling: Present status and future perspectives. Prog. Mater. Sci. 86, 75 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    J. Huang, J.A. Moore, J.H. Acquaye, and R.B. Kaner: Mechanochemical route to the conducting polymer polyaniline. Macromolecules 38, 317 (2005).

    Article  CAS  Google Scholar 

  24. 24.

    T. Abdiryim, Z. Xiao-Gang, and R. Jamal: Synthesis and characterization of poly(o-toluidine) doped with organic sulfonic acid by solid-state polymerization. J. Appl. Polym. Sci. 96, 1630 (2005).

    CAS  Article  Google Scholar 

  25. 25.

    R. Jamal, T. Abdiryim, Y. Ding, and I. Nurulla: Comparative studies of solid-state synthesized poly(o-methoxyaniline) doped with organic sulfonic acids. J. Polym. Res. 15, 75 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    T. Abdiryim, R. Jamal, and I. Nurulla: Doping effect of organic sulphonic acids on the solid-state synthesized polyaniline. J. Appl. Polym. Sci. 105, 576 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    X-S. Du, C-F. Zhou, G-T. Wang, and Y-M. Mai: Novel solid-state and template-free synthesis of branched polyaniline nanofibers. Chem. Mater. 20, 3806 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    A. Ubul, R. Jamal, A. Rahman, T. Awut, I. Nurulla, and T. Abdiryim: Solid-state synthesis and characterization of polyaniline/multi-walled carbon nanotubes composite. Synth. Met. 161, 2097 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martinez, J-M. Benoit, J. Schreiber, and O. Chauvet: Synthesis of a new polyaniline/nanotube composite: “In situ” polymerisation and charge transfer through site-selective interaction. Chem. Commun. 16, 1450 (2001).

    Article  CAS  Google Scholar 

  30. 30.

    X-b. Yan, Z-J. Han, Y. Yang, and B-K. Tay: Fabrication of carbon nanotube–polyaniline composites via electrostatic adsorption in aqueous colloids. J. Phys. Chem. C 111, 4125 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    D.C. Montgomery: Design and Analysis of Experiments, 5th ed. (John Wiley & Sons, New York, NY, 2004), p. 459.

    Google Scholar 

  32. 32.

    B. Fragneaud, K. Masenelli-Varlot, A. Gonzalez-Montiel, M. Terrones, and J-Y. Cavaillé: Efficient coating of N-doped carbon nanotubes with polystyrene using atomic transfer radical polymerization. Chem. Phys. Lett. 419, 567 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    R. Kamalakaran, M. Terrones, T. Seeger, P. Kohler-Redlich, M. Rühle, Y.A. Kim, T. Hayashi, and M. Endo: Synthesis of thick and crystalline nanotube arrays by spray pyrolysis. Appl. Phys. Lett. 77, 3385 (2000).

    CAS  Article  Google Scholar 

  34. 34.

    M. Terrones, R. Kamalakaran, T. Seeger, and M. Rühle: Novel nanoscale gas containers: Encapsulation of N2 in CNx nanotubes. Chem. Commun., 2335 (2000).

  35. 35.

    C.G. Espinosa-González, F.J. Rodríguez-Macías, A.G. Cano-Márquez, J. Kaur, M.L. Shofner, and Y.I. Vega-Cantú: Polystyrene composites with very high carbon nanotubes loadings by in situ grafting polymerization. J. Mater. Res. 28, 1087 (2013).

    Article  CAS  Google Scholar 

  36. 36.

    M.J. O’Neil, ed.: The Merck Index, 13th ed. (Merck & Co., Inc., Whitehouse Station, NJ, 2001); p. 712.

    Google Scholar 

  37. 37.

    J. Sohma: Mechanochemistry of polymers. Prog. Polym. Sci. 14, 451 (1989).

    CAS  Article  Google Scholar 

  38. 38.

    M.M. Caruso, D.A. Davis, Q. Shen, S.A. Odom, N.R. Sottos, S.R. White, and J.S. Moore: Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 109, 5755 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    C.P. Ewels and M. Glerup: Nitrogen doping in carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1345 (2005).

    CAS  Article  Google Scholar 

  40. 40.

    P. Ayala, R. Arenal, M. Rümmeli, A. Rubio, and T. Pichler: The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48, 575 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    R. Czerw, M. Terrones, J-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Rühle, and D.L. Carroll: Identification of electron donor states in N-doped carbon nanotubes. Nano Lett. 1, 457 (2001).

    CAS  Article  Google Scholar 

  42. 42.

    J.C. García-Gallegos, I. Martín-Gullón, J. Conesa, Y.I. Vega-Cantú, and F.J. Rodríguez-Macías: Effect of carbon nanofillers on the performance of electromechanical polyaniline based composite actuators. Nanotechnology 27, 015501 (2016).

    Article  CAS  Google Scholar 

  43. 43.

    P. Dallas, D. Stamopoulos, N. Boukos, V. Tzitzios, D. Niarchos, and D. Petridis: Characterization, magnetic and transport properties of polyaniline synthesized through interfacial polymerization. Polymer 48, 3162 (2007).

    CAS  Article  Google Scholar 

  44. 44.

    Y.B. Li, B.Q. Wei, J. Liang, Q. Yu, and D.H. Wu: Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon 37, 493 (1999).

    CAS  Article  Google Scholar 

  45. 45.

    J. Hilding, E.A. Grulke, Z.G. Zhang, and F. Lockwood: Dispersion of carbon nanotubes in liquids. J. Dispersion Sci. Technol. 24, 1 (2003).

    CAS  Article  Google Scholar 

  46. 46.

    J.F. Lu and C.J. Tsai: Hydrothermal phase transformation of hematite to magnetite. Nanoscale Res. Lett. 9, 230 (2014).

    Article  CAS  Google Scholar 

  47. 47.

    E. Park, O. Ostrovski, J. Zhang, S. Thomson, and R. Howe: Characterization of phases formed in the iron carbide process by X-ray diffraction, Mossbauer, X-ray photoelectron spectroscopy, and Raman spectroscopy analyses. Metall. Mater. Trans. B 32, 839 (2001).

    Article  Google Scholar 

Download references


Some of the initial experimental work reported here was performed when the authors worked at the Advanced Materials Department, Instituto Potosino de Investigación Científica y Tecnológica IPICYT (San Luis Potosí, S.L.P., México) and was supported by grants CB-2008-SEP-107082 (FJRM) and CB-2008-SEP-106942, (YIVC). The authors also thank Rede NANOBIOTEC-Brasil (Edital 04/CII-2008 CAPES/MEC) for support for a postdoctoral position (JCGG) and visiting professor stays (YIVC, FJRM) at UFPE. YIVC and FJRM also thank FACEPE and PROPESQ/UFPE for additional support. YIVC and FJRM also thank the Centro de Innovación en Diseño y Tecnología (CIDyT), Advanced Manufacturing and Nanotechnlogy for Device Design groups and the Department of Sciences—Chemistry and Nanotechnology of Tecnologico de Monterrey.

Author information



Corresponding author

Correspondence to Fernando J. Rodríguez-Macías.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Gallegos, J.C., Vega-Cantú, Y.I. & Rodríguez-Macías, F.J. Fast mechanochemical synthesis of carbon nanotube-polyaniline hybrid materials. Journal of Materials Research 33, 1486–1495 (2018).

Download citation