Effects of peroxo precursors and annealing temperature on properties and photocatalytic activity of nanoscale titania


Titania nanoparticles (anatase or anatase + rutile) with enhanced photocatalytic activity were successfully produced by treating titanyl sulfate with various peroxo compounds (hydrogen peroxide, ammonium persulfate, and urea hydrogen peroxide) with further annealing. Transformation of titanyl sulfate to titanium dioxide was investigated by X-ray diffraction, electron microscopy, X-ray microanalysis, IR, Raman, X-ray photoelectron, and UV/vis spectroscopy. The peroxo compound and annealing temperature play an important role in phase composition and properties of the samples. Correlations between phase composition, oxygen content, band gaps, and constant rates for methyl orange (MO) discoloration were found. The [TiOx(O2)2−x(H2O)m] phase, which forms on the first stage of the reaction, contains nanoparticles with small crystallites (1–2 nm) and promotes formation of titanium dioxide with the anatase structure. Thermal decomposition of the peroxo-containing phase results in formation of titanium dioxide. Oxygen excess prevents transformation of anatase to rutile, decreases band gap, and increases activity of titanium dioxide (anatase or anatase + rutile) in the model reaction of MO destruction.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    K. Hashimoto, H. Irie, and A. Fujishima: TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    K. Tanaka, M.F.V. Capule, and T. Hisanaga: Effect of crystallinity of TiO2 on its photocatalytic action. Chem. Phys. Lett. 187, 73 (1991).

    CAS  Article  Google Scholar 

  3. 3.

    P. Billik and G. Plesch: Mechanochemical synthesis of anatase and rutile nanopowders from TiOSO4. Mater. Lett. 61, 1183 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    Z.R. Ismagilov, L.T. Tsykoza, N.V. Shikina, V.F. Zarytova, V.V. Zinoviev, and S.N. Zagrebelnyi: Synthesis and stabilization of nano-sized titanium dioxide. Russ. Chem. Rev. 78, 873 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    C. Han, R. Luque, and D. Dionysiou: Facile preparation of controllable size monodisperse anatase titania nanoparticles. Chem. Commun. 48, 1860 (2011).

    Article  Google Scholar 

  6. 6.

    L.N. Obolenskaya, G.M. Kuz’micheva, E.V. Savinkina, N.V. Sadovskaya, A.V. Zhilkina, N.A. Prokudina, and V.V. Chernyshev: Influence of the conditions of the sulfate method on the characteristics of nanosized anatase-type samples. Russ. Chem. Bull. 61, 2049 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    D. Fattakhova-Rohlfing, A. Zaleska, and T. Bein: Three-dimensional titanium dioxide nanomaterials. Chem. Rev. 114, 9487 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    S.G. Kumar and K.S.R.K. Rao: Polymorphic phase transition among the titania crystal structures using a solution-based approach: From precursor chemistry to nucleation process. Nanoscale 6, 11574 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    M. Cargnello, T.R. Gordon, and C.B. Murray: Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem. Rev. 114, 9319 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    M. Lasfargues, A. Bell, and Y. Ding: In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications. J. Nanopart. Res. 18, 150 (2016).

    Article  CAS  Google Scholar 

  11. 11.

    E.S. Hanrahan: The thermal decomposition of titanyl sulphate hydrates. J. Inorg. Nucl. Chem. 26, 1757 (1964).

    CAS  Article  Google Scholar 

  12. 12.

    M.A.K. Ahmed, H. Fjellvåg, and A. Kjekshus: Syntheses and crystal structures of titanium oxide sulfates. Acta Chem. Scand. 50, 275 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    M.L. Reynolds and T.J. Wiseman: Some observations on the structure of titanyl sulphate dihydrate. J. Inorg. Nucl. Chem. 29, 1381 (1967).

    CAS  Article  Google Scholar 

  14. 14.

    M. Johnsson, P. Pettersson, and M. Nygren: Thermal decomposition of fibrous TiOSO4·2H2O to TiO2. Thermochim. Acta 298, 47 (1997).

    CAS  Article  Google Scholar 

  15. 15.

    H. Reynolds, S. Bhargava, and F. Antolasic: Structural investigation of titanyl sulfate dihydrate and intermediates formed during thermal decomposition. Chemeca, M. Tade, ed. (Engineers Australia, Perth, Australia, 2009); pp. 1–10.

    Google Scholar 

  16. 16.

    D.A.H. Hanaor and C.C. Sorrell: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    M. Strauss, C.M. Maroneze, J.M. de Souza e Silva, F.A. Sigoli, Y. Gushikem, and I.O. Mazali: Annealing temperature effects on sol–gel nanostructured mesoporous TiO2/SiO2 and its photocatalytic activity. Mater. Chem. Phys. 126, 188 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    L. Ge, M. Xu, L.E, Y. Tian, and H. Fang: Preparation of TiO2 thin films using inorganic peroxo titanic complex and autoclaved sols as precursors. Key Eng. Mater. 280–283, 809 (2005).

    Google Scholar 

  19. 19.

    H.W. Kim, J.H. Ryu, J. Moon, and D.H. Kim: Effect of ultrasonic treatment and temperature on nanocrystalline TiO2. J. Power Sources 163, 196 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    L. Ge and M. Xu: Fabrication and characterization of TiO2 photocatalytic thin film prepared from peroxo titanic acid sol. J. Sol-Gel Sci. Technol. 43, 1 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    J.A. Chang, M. Vithal, I.C. Baek, and S.I. Seok: Morphological and phase evolution of TiO2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid. J. Solid State Chem. 182, 749 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    A. Bandgar, S. Sabale, and S.H. Pawar: Studies on influence of reflux time on synthesis of nanocrystalline TiO2 prepared by peroxotitanate complex solutions. Ceram. Int. 38, 1905 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    V. Štengl, J. Henych, L. Szatmáry, and M. Kormunda: Photocatalytic oxidation of butane by titania after reductive annealing. J. Mater. Sci. 49, 4161 (2014).

    Article  CAS  Google Scholar 

  24. 24.

    P. Francatto, F.N. Souza Neto, A.E. Nogueira, A.M. Kubo, L.S. Ribeiro, L.P. Gonçalves, L.F. Gorup, E.R. Leite, and E.R. Camargo: Enhanced reactivity of peroxo-modified surface of titanium dioxide nanoparticles used to synthesize ultrafine bismuth titanate powders at lower temperatures. Ceram. Int. 42, 15767 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    K-Y. Lee, K. Sato, and A.R. Mohamed: Facile synthesis of anatase-rutile TiO2 composites with enhanced CO2 photoreduction activity and the effect of Pt loading on product selectivity. Mater. Lett. 163, 240 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    V. Štengl, T.M. Grygar, J. Henych, and M. Kormunda: Hydrogen peroxide route to Sn-doped titania photocatalysts. Chem. Cent. J. 6, 113 (2012).

    Article  CAS  Google Scholar 

  27. 27.

    V. Etacheri, M.K. Seery, S.J. Hinder, and S.C. Pillai: Oxygen rich titania: A dopant free, high temperature stable, and visible-light active anatase photocatalyst. Adv. Funct. Mater. 21, 3744 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    E. Savinkina, L. Obolenskaya, and G. Kuzmicheva: Efficiency of sensitizing nano-titania with organic dyes and peroxo complexes. Appl. Nanosci. 5, 125 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    E.V. Savinkina, L.N. Obolenskaya, G.M. Kuzmicheva, E.N. Kabachkov, A.A. Gainanova, Y.V. Zubavichus, V.Y. Murzin, and N.V. Sadovskaya: Introduction of peroxo groups into titania: Preparation, characterization and properties of the new peroxo-containing phase. CrystEngComm 17, 7113 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    X. Ma, D. Guo, Q. Jiang, Z. Ma, Zh. Ma, W. Ye, and C. Li: Preparation and characterization of SO42−/TiO2 and S2O82−/TiO2 catalysts. Front. Chem. Eng. China 1, 45 (2007).

    Article  Google Scholar 

  31. 31.

    N. Watanabe, T. Kaneko, Y. Uchimaru, S. Yanagida, A. Yasumori, and Y. Sugahara: Preparation of water-dispersible TiO2 nanoparticles from titanium tetrachloride using urea hydrogen peroxide as an oxygen donor. CrystEngComm 15, 10533 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    S. Abu Bakar and C. Ribeiro: Low temperature synthesis of N-doped TiO2 with rice-like morphology through peroxo assisted hydrothermal route: Materials characterization and photocatalytic properties. Appl. Surf. Sci. 377, 121 (2016).

    Article  CAS  Google Scholar 

  33. 33.

    L.N. Obolenskaya, A.A. Gaynanova, G.V. Kravchenko, G.M. Kuz’micheva, E.V. Savinkina, E.N. Domoroshchina, A.M. Tsybinsky, and A.V. Podbelsky: Nanocomposites based on silicon dioxide of different nature with functional titanium dioxide nanoparticles. Nanotechnol. Russ. 11, 41 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    R. López and R. Gómez: Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 61, 1 (2012).

    Article  CAS  Google Scholar 

  35. 35.

    G.T. Brown and J.R. Darwent: Photoreduction of methyl orange sensitized by colloidal titanium dioxide. J. Chem. Soc., Faraday Trans. 1 80, 1631 (1984).

    CAS  Article  Google Scholar 

  36. 36.

    P. Periyat, B. Naufal, and S.G. Ullattil: A review on high temperature stable anatase TiO2 photocatalysts. Mater. Sci. Forum 855, 78 (2016).

    Article  Google Scholar 

  37. 37.

    L.N. Obolenskaya, E.V. Savinkina, G.M. Kuzmicheva, and A.B. Istomin: Formation of nano-titania by thermal decomposition of titanyl sulfate in the presence of (NH4)2SO4, (NH4)2S2O6(O2), and (NH2)2CO·H2O2. In XX Mendeleev Congress on General and Applied Chemistry, 26–30 September, Ekaterinburg, 2016: Abstract Book, Vol. 2b; Chemistry and Technology of Materials and Nanomaterials (Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2016); p. 23.

    Google Scholar 

  38. 38.

    I. Vasilyeva, G. Kuz’micheva, A. Pochtar, A. Gainanova, O. Timaeva, A. Dorokhov, and V. Podbel’skiy: On the nature of the phase “η-TiO2”. New J. Chem. 40, 151 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Y. Ono and H. Hattori: Solid Base Catalysis (Springer Science & Business Media, Tokyo, 2012); p. 113.

    Google Scholar 

  40. 40.

    A. Tarasov, G. Trusov, A. Minnekhanov, D. Gil, E. Konstantinova, E. Goodilin, and Y. Dobrovolsky: Facile preparation of nitrogen-doped nanostructured titania microspheres by a new method of thermally assisted reactions in aqueous sprays. J. Mater. Chem. A 2, 3102 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    G. Wang, L. Xu, J. Zhang, T. Yin, and D. Han: Enhanced photocatalytic activity of TiO2 powders (P25) via calcination treatment. Int. J. Photoenergy 2012, 265760 (2012).

    Google Scholar 

  42. 42.

    K. Madhusudan Reddy, S.V. Manorama, and A. Ramachandra Reddy: Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239 (2002).

    CAS  Article  Google Scholar 

  43. 43.

    L.L. Tan, W.J. Ong, S.P. Chai, and A.R. Mohamed: Band gap engineered, oxygen-rich TiO2 for visible light induced photocatalytic reduction of CO2. Chem. Commun. 50, 6923 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    R.D. Shannon and J.A. Pask: Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 48, 391 (1965).

    CAS  Article  Google Scholar 

Download references


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information



Corresponding author

Correspondence to Elena Vladimirovna Savinkina.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savinkina, E.V., Obolenskaya, L.N., Kuzmicheva, G.M. et al. Effects of peroxo precursors and annealing temperature on properties and photocatalytic activity of nanoscale titania. Journal of Materials Research 33, 1422–1432 (2018). https://doi.org/10.1557/jmr.2018.52

Download citation