An unexpected phase transformation of ceria nanoparticles in aqueous media

Abstract

Cerium oxide nanoparticles (CNPs) are of significant interest to the scientific community due to their widespread applications in a variety of fields. It is proposed that size-dependent variations in the extent of Ce3+ and Ce4+ oxidation states of cerium in CNPs determine the performance of CNPs in application environments. To obtain greater molecular and structural understanding of chemical state transformations previously reported for ceria of ≈3 nm nanoparticles (CNPs) in response to changing ambient conditions, micro-XRD and Raman measurements were carried out for various solution conditions. The particles were observed to undergo a reversible transformation from a defective ceria structure to a non-ceria amorphous oxyhydroxide/peroxide phase in response to the addition of 30% hydrogen peroxide. For CNPs made up of ∼8 nm crystallites, a partial transformation was observed, and no transformation was observed for CNPs made up of ∼40 nm crystallites. This observation of differences in size-dependent transition behavior may help explain the benefits of using smaller CNPs in applications requiring regenerative property.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1.

    Y. Rui, P. Zhang, Y. Zhang, Y. Ma, X. He, X. Gui, Y. Li, J. Zhang, L. Zheng, S. Chu, Z. Guo, Z. Chai, Y. Zhao, and Z. Zhang: Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environ. Pollut. 198, 8 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    M. Baalousha, P. Le Coustumer, I. Jones, and J.R. Lead: Characterisation of structural and surface speciation of representative commercially available cerium oxide nanoparticles. Environ. Chem. 7, 377 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos: Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    C. Walkey, S. Das, S. Seal, J. Erlichman, K. Heckman, L. Ghibelli, E. Traversa, J.F. McGinnis, and W.T. Self: Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ. Sci.: Nano 2, 33 (2015).

    CAS  Google Scholar 

  5. 5.

    A. Lashtabeg and S.J. Skinner: Solid oxide fuel cells-a challenge for materials chemists. J. Mater. Chem. 16, 3161 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    A. Corma, P. Atienzar, H. Garcia, and J.Y. Chane-Ching: Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 3, 394 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    P.T. Krenzke and J.H. Davidson: On the efficiency of solar H2 and CO production via the thermochemical cerium oxide redox cycle: The option of inert-swept reduction. Energy Fuels 29, 1045 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    J. Chen, S. Patil, S. Seal, and J.F. McGinnis: Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 1, 142 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    A. Asati, S. Santra, C. Kaittanis, and J.M. Perez: Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4, 5321 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    J. Gagnon and K.M. Fromm: Toxicity and protective effects of cerium oxide nanoparticles (nanoceria) depending on their preparation method, particle size, cell type, and exposure route. Eur. J. Inorg. Chem. 2015, 4510 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    A.S. Karakoti, P. Munusamy, K. Hostetler, V. Kodali, S. Kuchibhatla, G. Orr, J.G. Pounds, J.G. Teeguarden, B.D. Thrall, and D.R. Baer: Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. Surf. Interface Anal. 44, 882 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    S.V.N.T. Kuchibhatla, A.S. Karakoti, D.R. Baer, S. Samudrala, M.H. Engelhard, J.E. Amonette, S. Thevuthasan, and S. Seal: Influence of aging and environment on nanoparticle chemistry: Implication to confinement effects in nanoceria. J. Phys. Chem. C 116, 14108 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    P. Zhang, Y. Ma, Z. Zhang, X. He, J. Zhang, Z. Guo, R. Tai, Y. Zhao, and Z. Chai: Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6, 9943 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    J. Zhang, T. Naka, S. Ohara, K. Kaneko, T. Trevethan, A. Shluger, and T. Adschiri: Surface ligand assisted valence change in ceria nanocrystals. Phys. Rev. B 84, 045411 (2011).

    Article  CAS  Google Scholar 

  15. 15.

    S. Barkam, J. Ortiz, S. Saraf, N. Eliason, R. McCormack, S. Das, A. Gupta, C. Neal, A. Petrovici, C. Hanson, M.D. Sevilla, A. Adhikary, and S. Seal: Modulating the catalytic activity of cerium oxide nanoparticles with the anion of the precursor salt. J. Phys. Chem. C 121, 20039 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    A. Kumar, S. Das, P. Munusamy, W. Self, D.R. Baer, D.C. Sayle, and S. Seal: Behavior of nanoceria in biologically-relevant environments. Environ. Sci.: Nano 1, 516 (2014).

    CAS  Google Scholar 

  17. 17.

    S. Gangopadhyay, D.D. Frolov, A.E. Masunov, and S. Seal: Structure and properties of cerium oxides in bulk and nanoparticulate forms. J. Alloys Compd. 584, 199 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    V.H. Grassian: When size really matters: Size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J. Phys. Chem. C 112, 18303 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    C.T. Campbell, S.C. Parker, and D.E. Starr: The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    S. Candace: Particle Size Matters: Studies Fail to Include Basics for Asserting Toxicity (Small Times Magazine, Ann Arbor, MI, 2006).

    Google Scholar 

  21. 21.

    S.J.L. Billinge and I. Levin: The problem with determining atomic structure at the nanoscale. Science 316, 561 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    M. Tella, M. Auffan, L. Brousset, J. Issartel, I. Kieffer, C. Pailles, E. Morel, C. Santaella, B. Angeletti, E. Artells, J. Rose, A. Thiéry, and J-Y. Bottero: Transfer, transformation, and impacts of ceria nanomaterials in aquatic mesocosms simulating a pond ecosystem. Environ. Sci. Technol. 48, 9004 (2014).

    Article  CAS  Google Scholar 

  23. 23.

    C.J. Szymanski, P. Munusamy, C. Mihai, Y. Xie, D. Hu, M.K. Gilles, T. Tyliszczak, S. Thevuthasan, D.R. Baer, and G. Orr: Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles. Biomaterials 62, 147 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Y. Ma, P. Zhang, Z. Zhang, X. He, J. Zhang, Y. Ding, J. Zhang, L. Zheng, Z. Guo, L. Zhang, Z. Chai, and Y. Zhao: Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place? Environ. Sci. Technol. 49, 10667 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    L. Wu, H.J. Wiesmann, A.R. Moodenbaugh, R.F. Klie, Y. Zhu, D.O. Welch, and M. Suenaga: Oxidation state and lattice expansion of CeO2−x nanoparticles as a function of particle size. Phys. Rev. B 69, 125415 (2004).

    Article  CAS  Google Scholar 

  26. 26.

    S.S. Lee, W. Song, M. Cho, H.L. Puppala, P. Nguyen, H. Zhu, L. Segatori, and V.L. Colvin: Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7, 9693 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    S. Deshpande, S. Patil, S. Kuchibhatla, and S. Seal: Size dependency variation in the lattice parameter and valency state in nanocrystalline cerium oxide. Appl. Phys. Lett. 87, 133113 (2005).

    Article  CAS  Google Scholar 

  28. 28.

    X.H. Zhou, L.L. Wong, A.S. Karakoti, S. Seal, and J.F. McGinnis: Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the vldlr knockout mouse. PLoS One 6 e16733 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    L. Alili, M. Sack, A.S. Karakoti, S. Teuber, K. Puschmann, S.M. Hirst, C.M. Reilly, K. Zanger, W. Stahl, S. Das, S. Seal, and P. Brenneisen: Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials 32, 2918 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    A. Karakoti, S. Singh, J.M. Dowding, S. Seal, and W.T. Self: Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 39, 4422 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    J.M. Dowding, S. Lubitz, A. Karakoti, A. Kim, S. Seal, M. Ellisman, G. Perkins, E. Bossy-Wetzel, and W. Self: Cerium oxide nanoparticles prevent nitrosative stress in neuronal cell culture model. Free Radicals Biol. Med. 49, S181 (2010).

    Article  Google Scholar 

  32. 32.

    J. Colon, L. Herrera, J. Smith, S. Patil, C. Komanski, P. Kupelian, S. Seal, D.W. Jenkins, and C.H. Baker: Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed. Nanotechnol. Biol. Med. 5, 225 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    D.R. Baer: The chameleon effect: Characterization challenges due to the variability of nanoparticles and their surfaces. Front. Chem. 6 Article 145 (2018).

  34. 34.

    F. Zhang, P. Wang, J. Koberstein, S. Khalid, and S-W. Chan: Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf. Sci. 563, 74 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    D.R. Baer, J.E. Amonette, M.H. Engelhard, D.J. Gaspar, A.S. Karakoti, S. Kuchibhatla, P. Nachimuthu, J.T. Nurmi, Y. Qiang, V. Sarathy, S. Seal, A. Sharma, P.G. Tratnyek, and C.M. Wang: Characterization challenges for nanomaterials. Surf. Interface Anal. 40, 529 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    D.R. Baer, M.H. Engelhard, G.E. Johnson, J. Laskin, K. Mueller, P. Munusamy, S. Thevuthasan, H. Wang, N. Washton, A. Elder, B.L. Baisch, A. Karakoti, S.V.N.T. Kuchibhatla, and D.W. Moon: Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. J. Vac. Sci. Technol., A 31, 050820 (2013).

    Article  CAS  Google Scholar 

  37. 37.

    D.R. Baer: Application of surface analysis methods to nanomaterials: Summary of ISO/TC 201 technical report: ISO 14187:2011—Surface chemical analysis—Characterization of nanomaterials. Surf. Interface Anal. 44, 1305 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    T.M. Inerbaev, A.S. Karakoti, S.V.N.T. Kuchibhatla, A. Kumar, A.E. Masunov, and S. Seal: Aqueous medium induced optical transitions in cerium oxide nanoparticles. Phys. Chem. Chem. Phys. 17, 6217 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    A.S. Karakoti, S.V.N.T. Kuchibhatla, K.S. Babu, and S. Seal: Direct synthesis of nanoceria in aqueous polyhydroxyl solutions. J. Phys. Chem. C 111, 17232 (2007).

    CAS  Article  Google Scholar 

  40. 40.

    A.S. Karakoti, S. Singh, A. Kumar, M. Malinska, S.V.N.T. Kuchibhatla, K. Wozniak, W.T. Self, and S. Seal: PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc. 131, 14144 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    S. Kuchibhatla, A.S. Karakoti, and S. Seal: Hierarchical assembly of inorganic nanostructure building blocks to octahedral superstructures—A true template-free self-assembly. Nanotechnology 18, 075303 (2007).

    Article  CAS  Google Scholar 

  42. 42.

    S. Patil, S. Seal, Y. Guo, A. Schulte, and J. Norwood: Role of trivalent La and Nd dopants in lattice distortion and oxygen vacancy generation in cerium oxide nanoparticles. Appl. Phys. Lett. 88, 243110 (2006).

    Article  CAS  Google Scholar 

  43. 43.

    F.H. Scholes, A.E. Hughes, S.G. Hardin, P. Lynch, and P.R. Miller: Influence of hydrogen peroxide in the preparation of nanocrystalline ceria. Chem. Mater. 19, 2321 (2007).

    CAS  Article  Google Scholar 

  44. 44.

    R.W. Tarnuzzer, J. Colon, S. Patil, and S. Seal: Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett. 5, 2573 (2005).

    CAS  Article  Google Scholar 

  45. 45.

    S. Tsunekawa, T. Fukuda, and A. Kasuya: Blue shift in ultraviolet absorption spectra of monodisperse CeO2−x nanoparticles. J. Appl. Phys. 87, 1318 (2000).

    CAS  Article  Google Scholar 

  46. 46.

    S. Tsunekawa, R. Sivamohan, T. Ohsuna, A. Kasuya, H. Takahashi, and K. Tohji: Ultraviolet absorption spectra of CeO2 nano-particles. Mater. Sci. Forum 315–317, 439 (1999).

    Article  Google Scholar 

  47. 47.

    H.Z. Zhang, B. Gilbert, F. Huang, and J.F. Banfield: Water-driven structure transformation in nanoparticles at room temperature. Nature 424, 1025 (2003).

    CAS  Article  Google Scholar 

  48. 48.

    Y. Gao and X. Peng: Crystal structure control of CdSe nanocrystals in growth and nucleation: Dominating effects of surface versus interior structure. J. Am. Chem. Soc. 136, 6724 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Z. Fan, X. Huang, Y. Han, M. Bosman, Q. Wang, Y. Zhu, Q. Liu, B. Li, Z. Zeng, J. Wu, W. Shi, S. Li, C.L. Gan, and H. Zhang: Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 6, 6571 (2015).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

A portion of the research reported here was performed in Environmental Molecular Sciences Laboratory (EMSL) a DOE user facility supported by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Authors acknowledge the help from scientists in EMSL, specifically Dr. Nachimuthu Ponnusamy for his help with carrying out micro-XRD experiments and other researchers in Sudipta Seal (SS) group for their contributions to understanding CNP systems. CNP research by SS group was supported by NSF NIRT, NSF CMII and IREE, and NSF EEC (US Australia). Parts of the work are funded by NIH/NIEHS-U19 U19 ES019544 program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Satyanarayana V. N. T. Kuchibhatla.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuchibhatla, S.V.N.T., Karakoti, A.S., Vasdekis, A.E. et al. An unexpected phase transformation of ceria nanoparticles in aqueous media. Journal of Materials Research 34, 465–473 (2019). https://doi.org/10.1557/jmr.2018.490

Download citation