In vitro evaluation of a novel multiwalled carbon nanotube/nanohydroxyapatite/polycaprolactone composite for bone tissue engineering

Abstract

In this study, a three-phased multiwalled scaffold, composed of carbon nanotube (mwCNT), nanocrystalline hydroxyapatite (nHA), and polycaprolactone (PCL), was fabricated by the solvent evaporation technique. The structure character, mechanical properties, and degradation activity in simulated body fluid (SBF), along with osteoproductive ability in human osteosarcoma cell MG63, were investigated thoroughly. Results showed that the three phases in mwCNT/nHA/PCL composite presented excellent miscibility and stronger interfacial force when the weight content was 1/15/84 (wt%). Simultaneously, the composite had smaller porosity and slower degradation rate, and there was massive crystallized hydroxyapatite formed on the surface after being soaked in SBF. With regard to bioactivity, MG63s on this scaffolds presented good proliferation performance and differentiated into the osteogenic lineage by expressing high levels of ALP. It was concluded that mwCNTs/nHA/PCL composite scaffolds might be beneficial for bone tissue engineering at a relatively low concentration of mwCNTs and nHA.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1.

    U. Kneser, D.J. Schaefer, B. Munder, C. Klemt, C. Andree, and G.B. Stark: Tissue engineering of bone. Minimally Invasive Ther. Allied Technol. 11, 107 (2004).

    Article  Google Scholar 

  2. 2.

    D. Dean, K.J. Min, and A. Bond: Computer aided design of large-format prefabricated cranial plates. J. Craniofacial Surg. 14, 819 (2003).

    Article  Google Scholar 

  3. 3.

    T.L. Siu, J.M. Rogers, K. Lin, R. Thompson, and M. Owbridge: Custom-made titanium 3D printed interbody cages for treatment of osteoporotic fracture related spinal deformity. World Neurosurg. 111, 1 (2018).

    Article  Google Scholar 

  4. 4.

    D.W. Hutmacher: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    S.J. Hollister: Porous scaffold design for tissue engineering. Nat. Mater. 4, 518 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, and J.M. Kenny: Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stab. 95, 2126 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    M. Abu Bakar, P. Cheang, and K. Khor: Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Compos. Sci. Technol. 63, 421 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    K. Li and S.C. Tjong: Preparation and characterization of isotactic polypropylene reinforced with hydroxyapatite nanorods. J. Macromol. Sci., Phys. 50, 1983 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato: Chemistry of carbon nanotubes. Chem. Rev. 106, 1105 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    K. Sahithi, M. Swetha, K. Ramasamy, N. Srinivasan, and N. Selvamurugan: Polymeric composites containing carbon nanotubes for bone tissue engineering. Int. J. Biol. Macromol. 46, 281 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Q. Cheng, K. Rutledge, and E. Jabbarzadeh: Carbon nanotube—poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Ann. Biomed. Eng. 41, 904 (2013).

    Article  Google Scholar 

  12. 12.

    C.Z. Liao, K. Li, H.M. Wong, W.Y. Tong, K.W.K. Yeung, and S.C. Tjong: Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mater. Sci. Eng., C 33, 1380 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    T. Shokuhfar, A. Makradi, E. Titus, G. Cabral, S. Ahzi, A.C. Sousa, S. Belouettar, and J. Gracio: Prediction of the mechanical properties of hydroxyapatite/polymethyl methacrylate/carbon nanotubes nanocomposite. J. Nanosci. Nanotechnol. 8, 4279 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    J. Zhang, Z. Wen, M. Zhao, and C. Dai: Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition. Mater. Sci. Eng., C 58, 992 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    S. Liao, G.F. Xu, W. Wang, F. Watari, F.Z. Cui, S. Ramakrishna, and C.K. Chan: Self-assembly of nano-hydroxyapatite on multi-walled carbon nanotubes. Acta Biomater. 3, 669 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    M.A. Woodruff and D.W. Hutmacher: The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    J. Huang, S.M. Best, W. Bonfield, R.A. Brooks, N. Rushton, S.N. Jayasinghe, and M.J. Edirisinghe: In vitro assessment of the biological response to nano-sized hydroxyapatite. J. Mater. Sci.: Mater. Med. 15, 441 (2004).

    CAS  Google Scholar 

  18. 18.

    B. Dorj, J.E. Won, J.H. Kim, S.J. Choi, U.S. Shin, and H.W. Kim: Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. J. Biomed. Mater. Res., Part A 101, 1670 (2013).

    Article  CAS  Google Scholar 

  19. 19.

    E.M. Goncalves, F.J. Oliveira, R.F. Silva, M.A. Neto, M.H. Fernandes, M. Amaral, M.V. Regí, and M. Vila: Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J. Biomed. Mater. Res., Part B 104, 1210 (2015).

    Article  CAS  Google Scholar 

  20. 20.

    A. Baji, S.C. Wong, T. Liu, T. Li, and T.S. Srivatsan: Morphological and X-ray diffraction studies of crystalline hydroxyapatite-reinforced polycaprolactone. J. Biomed. Mater. Res., Part B 81, 343 (2007).

    Article  CAS  Google Scholar 

  21. 21.

    H.W. Kim, J.C. Knowles, and H.E. Kim: Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 25, 1279 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    M. Cadek, J.N. Coleman, V. Barron, K. Hedicke, and W.J. Blau: Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 81, 5123 (2003).

    Article  CAS  Google Scholar 

  23. 23.

    T. Kokubo, H.M. Kim, and M. Kawashita: Novel bioactive materials with different mechanical properties. Biomaterials 24, 2161 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    D. Boyd, M.R. Towler, A.W. Wren, O.M. Clarkin, and D.A. Tanner: TEM analysis of apatite surface layers observed on zinc based glass polyalkenoate cements. J. Mater. Sci. 43, 1170 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    X. Zhong, Z.F. Lu, P. Valtchev, H. Wei, H. Zreiqat, and F. Dehghani: Surface modification of poly(propylene carbonate) by aminolysis and layer-by-layer assembly for enhanced cytocompatibility. Colloids Surf., B 93, 75 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Y.S. Hwang, N. Sangaj, and S. Varghese: Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Tissue Eng., Part A 16, 3033 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    K. Anselme, P. Linez, M. Bigerelle, D. Le Maguer, P. Hardouin, H.F. Hildebrand, A. Iost, and J.M. Leroy: The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials 21, 1567 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    B. Tucker and M. Lardelli: A rapid apoptosis assay measuring relative acridine orange fluorescence in zebrafish embryos. Zebrafish 4, 113 (2007).

    Article  Google Scholar 

  29. 29.

    E. Vega-Avila and M.K. Pugsley: An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc. West. Pharmacol. Soc. 54, 10 (2011).

    CAS  Google Scholar 

  30. 30.

    K. Anselme: Osteoblast adhesion on biomaterials. Biomaterials 21, 667 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    V. Neuhoff, R. Stamm, and H. Eibl: Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: A systematic analysis. Electrophoresis 6, 427 (1985).

    CAS  Article  Google Scholar 

  32. 32.

    C.Y. Li and T.W. Chou: Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mech. Mater. 36, 1047 (2004).

    Article  Google Scholar 

  33. 33.

    Y.Z. Zhang, J.R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, and C.T. Lim: Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29, 4314 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    S.Z. Fu, P.Y. Ni, B.Y. Wang, B.Y. Chu, J.R. Peng, L. Zheng, X. Zhao, F. Luo, Y.Q. Wei, and Z.Y. Qian: In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone)/nano-hydroxyapatite composite scaffold. Biomaterials 33, 8363 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    Y.B. Zhang, V. Leblanc-Boily, Y. Zhao, and R.E. Prud’homme: Wide angle X-ray diffraction investigation of crystal orientation in miscible blend of poly(ε-caprolactone)/poly(vinyl chloride) crystallized under strain. Polymer 46, 8141 (2005).

    CAS  Article  Google Scholar 

  36. 36.

    K. Cho, D.N. Saheb, H. Yang, B. Kang, J. Kim, and S. Lee: Real time in situ X-ray diffraction studies on the melting memory effect in the crystallization of β-isotactic polypropylene. Polymer 44, 4053 (2003).

    CAS  Article  Google Scholar 

  37. 37.

    B. McCarthy, J.N. Coleman, R. Czerw, A.B. Dalton, M.I.H. Panhuis, A. Maiti, A. Drury, P. Bernier, J.B. Nagy, B. Lahr, H.J. Byrne, D.L. Carroll, and W.J. Blau: A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer. J. Phys. Chem. B 106, 2210 (2002).

    CAS  Article  Google Scholar 

  38. 38.

    L.L. Pan, X.B. Pei, R. He, Q.B. Wan, and J. Wang: Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloids Surf., B 93, 226 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    F. Luo, L.L. Pan, G. Hong, T. Wang, X.B. Pei, J. Wang, and Q.B. Wan: In vitro and in vivo characterization of multi-walled carbon nanotubes/polycaprolactone composite scaffolds for bone tissue engineering applications. J. Biomater. Tissue Eng. 7, 787 (2017).

    Article  Google Scholar 

  40. 40.

    J.E. Babensee, J.M. Anderson, L.V. McIntire, and A.G. Mikos: Host response to tissue engineered devices. Adv. Drug Delivery Rev. 33, 111 (1998).

    CAS  Article  Google Scholar 

  41. 41.

    O. Persenaire, M. Alexandre, P. Degee, and P. Dubois: Mechanisms and kinetics of thermal degradation of poly(ε-caprolactone). Biomacromolecules 2, 288 (2001).

    CAS  Article  Google Scholar 

  42. 42.

    C.X.F. Lam, M.M. Savalani, S.H. Teoh, and D.W. Hutmacher: Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: Accelerated versus simulated physiological conditions. Biomed. Mater. 3, 4108 (2008).

    Article  CAS  Google Scholar 

  43. 43.

    J.M. Meseguer-Duenas, J. Mas-Estelles, I. Castilla-Cortazar, J.L. Escobar Ivirico, and A. Vidaurre: Alkaline degradation study of linear and network poly(ε-caprolactone). J. Mater. Sci.: Mater. Med. 22, 11 (2011).

    CAS  Google Scholar 

  44. 44.

    Y. Lei, B. Rai, K.H. Ho, and S.H. Teoh: In vitro degradation of novel bioactive polycaprolactone—20% tricalcium phosphate composite scaffolds for bone engineering. Mater. Sci. Eng., C 27, 293 (2007).

    CAS  Article  Google Scholar 

  45. 45.

    M. Cadek, J.N. Coleman, V. Barron, K. Hedicke, and W.J. Blau: Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 81, 5123 (2002).

    CAS  Article  Google Scholar 

  46. 46.

    T. Kokubo and H. Takadama: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907 (2006).

    CAS  Article  Google Scholar 

  47. 47.

    G. Thalji, C. Gretzer, and L.F. Cooper: Comparative molecular assessment of early osseointegration in implant-adherent cells. Bone 52, 444 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    D.O. Costa, P.D.H. Prowse, T. Chrones, S.M. Sims, D.W. Hamilton, A.S. Rizkalla, and S. Jeffrey Dixon: The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings. Biomaterials 34, 7215 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    L.E. Freed, G. Vunjak-Novakovic, R.J. Biron, D.B. Eagles, D.C. Lesnoy, S.K. Barlow, and R. Langer: Biodegradable polymer scaffolds for tissue engineering. Biotechnology 12, 689 (1994).

    CAS  Google Scholar 

  50. 50.

    D. Yamashita, M. Machigashira, M. Miyamoto, H. Takeuchi, K. Noguchi, Y. Izumi, and S. Ban: Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent. Mater. J. 28, 461 (2009).

    CAS  Article  Google Scholar 

  51. 51.

    D. Mata, F.J. Oliveira, M. Ferro, P.S. Gomes, M.H. Fernandes, M.A. Lopes, and R.F. Silva: Multifunctional carbon nanotube/bioceramics modulate the directional growth and activity of osteoblastic cells. J. Biomed. Nanotechnol. 10, 725 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    J. Behring, R. Junker, X.F. Walboomers, B. Chessnut, and J.A. Jansen: Toward guided tissue and bone regeneration: Morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology 96, 1 (2008).

    CAS  Article  Google Scholar 

  53. 53.

    G. Raffaini and F. Ganazzoli: Surface topography effects in protein adsorption on nanostructured carbon allotropes. Langmuir 29, 4883 (2013).

    CAS  Article  Google Scholar 

  54. 54.

    H.U. Lee, Y.S. Jeong, S.Y. Jeong, S.Y. Park, J.S. Bae, H.G. Kim, and C.R. Cho: Role of reactive gas in atmospheric plasma for cell attachment and proliferation on biocompatible poly ε-caprolactone film. Appl. Surf. Sci. 254, 5700 (2008).

    CAS  Article  Google Scholar 

  55. 55.

    R. Marom, I. Shur, R. Solomon, and D. Benayahu: Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. J. Cell. Physiol. 202, 41 (2005).

    CAS  Article  Google Scholar 

  56. 56.

    S. Morelli, S. Salerno, J. Holopainen, M. Ritala, and L.D. Bartolo: Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid—nanohydroxyapatite fiber scaffolds. J. Biotechnol. 204, 53 (2015).

    CAS  Article  Google Scholar 

  57. 57.

    A. Abarrategi, M.C. Gutierrez, C. Moreno-Vicente, M.J. Hortiguela, V. Ramos, J.L. Lopez-Lacomba, M.L. Ferrer, and F.D. Monte: Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29, 94 (2008).

    CAS  Article  Google Scholar 

  58. 58.

    O. Im, J. Li, M. Wang, L.G. Zhang, and M. Keidar: Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. Int. J. Nanomed. 7, 2087 (2012).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huling Lv.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Li, J., Liao, Q. et al. In vitro evaluation of a novel multiwalled carbon nanotube/nanohydroxyapatite/polycaprolactone composite for bone tissue engineering. Journal of Materials Research 34, 532–544 (2019). https://doi.org/10.1557/jmr.2018.484

Download citation