Lateral water structure connects metal oxide nanoparticle faces


When a metal oxide surface is immersed in aqueous solution, it has the ability to bind, orient, and order interfacial water, affecting both chemical and physical interactions with the surface. Structured interfacial water thus possesses time-averaged, spatially varying polarization charge and potential that are comparable to those arising due to ion accumulation. It is well established that interfacial water structure propagates from the surface into bulk solution. Here, we show that interfacial water structure also propagates laterally, with important consequences. The constant pH molecular dynamics was used to impose a pH difference between opposite faces of a model goethite (α-FeOOH) nanoparticle and quantify water polarization charge on intervening faces. We find that the structure of water on one face is strongly affected by the structure on nearby surfaces, revealing the importance of long-range lateral hydrogen bonding networks with implications for particle aggregation, oriented attachment, and processes such as dissolution and growth.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1.

    W.M. White: Geochemistry (Wiley, Chichester, West Sussex, UK, 2013).

    Google Scholar 

  2. 2.

    J. Lyklema: Fundamentals of Interface and Colloid Science: Solid-Liquid Iterfaces (Elsevier, San Diego, 1995).

    Google Scholar 

  3. 3.

    W. Stumm and J.J. Morgan: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (Wiley, New York, 1996).

    Google Scholar 

  4. 4.

    G.E. Brown, V.E. Henrich, W.H. Casey, D.L. Clark, C. Eggleston, A. Felmy, D.W. Goodman, M. Grätzel, G. Maciel, M.I. McCarthy, K.H. Nealson, D.A. Sverjensky, M.F. Toney, and J.M. Zachara: Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 99, 77 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    G.E. Brown: How minerals react with water. Science 294, 67 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    G.E. Brown and G. Calas: Mineral-aqueous solution interfaces and their impact on the environment. Geochem. Perspect. 1, 483 (2012).

    Article  Google Scholar 

  7. 7.

    L. Bousse and J.D. Meindl: Geochemical Processes at Mineral Surfaces (American Chemical Society, Washington, DC, 1987); pp. 79–98.

    Google Scholar 

  8. 8.

    J.W. Bowden, S. Nagarajah, N.J. Barrow, A.M. Posner, and J.P. Quirk: Describing the adsorption of phosphate, citrate and selenite on a variable-charge mineral surface. Soil Res. 18, 49 (1980).

    CAS  Article  Google Scholar 

  9. 9.

    R. Charmas, W. Piasecki, and W. Rudzinski: Four layer complexation model for ion adsorption at electrolyte/oxide interface: Theoretical foundations. Langmuir 11, 3199 (1995).

    CAS  Article  Google Scholar 

  10. 10.

    W.H. van Riemsdijk, J.C.M. de Wit, L.K. Koopal, and G.H. Bolt: Metal ion adsorption on heterogeneous surfaces: Adsorption models. J. Colloid Interface Sci. 116, 511 (1987).

    Article  Google Scholar 

  11. 11.

    J.A. Davis, R.O. James, and J.O. Leckie: Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes. J. Colloid Interface Sci. 63, 480 (1978).

    CAS  Article  Google Scholar 

  12. 12.

    D.E. Yates, S. Levine, and T.W. Healy: Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc., Faraday Trans. 1 70, 1807 (1974).

    CAS  Article  Google Scholar 

  13. 13.

    O. Björneholm, M.H. Hansen, A. Hodgson, L-M. Liu, D.T. Limmer, A. Michaelides, P. Pedevilla, J. Rossmeisl, H. Shen, G. Tocci, E. Tyrode, M-M. Walz, J. Werner, and H. Bluhm: Water at interfaces. Chem. Rev. 116, 7698 (2016).

    Article  CAS  Google Scholar 

  14. 14.

    J.O. Bockris and S.U.M. Khan: Surface Electrochemistry: A Molecular Level Approach (Springer, New York, 1993).

    Google Scholar 

  15. 15.

    V. Raicu and Y. Feldman: Dielectric Relaxation in Biological Systems: Physical Principles, Methods, and Applications (Oxford University Press, Oxford, UK, 2015).

    Google Scholar 

  16. 16.

    M.F. Toney, J.N. Howard, J. Richer, G.L. Borges, J.G. Gordon, O.R. Melroy, D.G. Wiesler, D. Yee, and L.B. Sorensen: Voltage-dependent ordering of water molecules at an electrode—electrolyte interface. Nature 368, 444 (1994).

    CAS  Article  Google Scholar 

  17. 17.

    Y.R. Shen and V. Ostroverkhov: Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. 106, 1140 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    M.A. Henderson: The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    J. Carrasco, A. Hodgson, and A. Michaelides: A molecular perspective of water at metal interfaces. Nat. Mater. 11, 667 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    P. Fenter and N.C. Sturchio: Mineral—water interfacial structures revealed by synchrotron X-ray scattering. Prog. Surf. Sci. 77, 171 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    J.N. Israelachvili and R.M. Pashley: Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306, 249 (1983).

    CAS  Article  Google Scholar 

  22. 22.

    E. Spohr: Molecular simulation of the electrochemical double layer. Electrochim. Acta 44, 1697 (1999).

    CAS  Article  Google Scholar 

  23. 23.

    A. Wieckowski: Interfacial Electrochemistry: Theory: Experiment, and Applications (CRC Press, New York, 1999).

    Google Scholar 

  24. 24.

    J. Wang, A.G. Kalinichev, and R.J. Kirkpatrick: Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study. Geochim. Cosmochim. Acta 70, 562 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    S.H. Lee and P.J. Rossky: A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces—A molecular dynamics simulation study. J. Chem. Phys. 100, 3334 (1994).

    CAS  Article  Google Scholar 

  26. 26.

    M.R. Philpott and J.N. Glosli: Electric potential near a charged metal surface in contact with aqueous electrolyte. J. Electroanal. Chem. 409, 65 (1996).

    Article  Google Scholar 

  27. 27.

    P. Zarzycki, S. Kerisit, and K.M. Rosso: Molecular dynamics study of the electrical double layer at silver chloride- electrolyte interfaces. J. Phys. Chem. C 114, 8905 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    P. Zarzycki and K.M. Rosso: Molecular dynamics simulation of the AgCl/electrolyte interfacial capacity. J. Phys. Chem. C 114, 10019 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    P. Zarzycki, S. Kerisit, and K.M. Rosso: Molecular dynamics study of Fe(II) adsorption, electron exchange, and mobility at goethite (α-FeOOH) surfaces. J. Phys. Chem. C 119, 3111 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    P. Zarzycki and K.M. Rosso: Surface charge effects on Fe(II) sorption and oxidation at (110) goethite surfaces. J. Phys. Chem. C 122, 10059 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    J. Mongan, D.A. Case, and J.A. McCammon: Constant pH molecular dynamics in generalized born implicit solvent. J. Comput. Chem. 25, 2038 (2004).

    CAS  Article  Google Scholar 

  32. 32.

    P. Zarzycki, D.M. Smith, and K.M. Rosso: Proton dynamics on goethite nanoparticles and coupling to electron transport. J. Chem. Theory Comput. 11, 1715 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    M. Borkovec: Origin of 1-pK and 2-pK models for ionizable water—solid interfaces. Langmuir 13, 2608 (1997).

    CAS  Article  Google Scholar 

  34. 34.

    M. Borkovec, J. Daicic, and G.J.M. Koper: Ionization properties of interfaces and linear polyelectrolytes: A discrete charge Ising model. Phys. A 298, 1 (2001).

    CAS  Article  Google Scholar 

  35. 35.

    J.R. Rustad, E. Wasserman, A.R. Felmy, and C. Wilke: Molecular dynamics study of proton binding to silica surfaces. J. Colloid Interface Sci. 198, 119 (1998).

    CAS  Article  Google Scholar 

  36. 36.

    P. Zarzycki: Computational study of proton binding at the rutile/electrolyte solution interface. J. Phys. Chem. C 111, 7692 (2007).

    CAS  Article  Google Scholar 

  37. 37.

    P. Zarzycki: Comparison of the Monte Carlo estimation of surface electrostatic potential at the hematite (0001)/electrolyte interface with the experiment. Appl. Surf. Sci. 253, 7604 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    P. Zarzycki and K.M. Rosso: Nonlinear response of the surface electrostatic potential formed at metal oxide/electrolyte interfaces. A Monte Carlo simulation study. J. Colloid Interface Sci. 341, 143 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    P. Zarzycki, S. Chatman, T. Preočanin, and K.M. Rosso: Electrostatic potential of specific mineral faces. Langmuir 27, 7986 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    J.R. Rustad and A.R. Felmy: The influence of edge sites on the development of surface charge on goethite nanoparticles: A molecular dynamics investigation. Geochim. Cosmochim. Acta 69, 1405 (2005).

    CAS  Article  Google Scholar 

  41. 41.

    P. Zarzycki: Monte Carlo simulation of the electrical differential capacitance of a double electrical layer formed at the heterogeneous metal oxide/electrolyte interface. J. Colloid Interface Sci. 297, 204 (2006).

    CAS  Article  Google Scholar 

  42. 42.

    P. Zarzycki: Monte Carlo modeling of ion adsorption at the energetically heterogeneous metal oxide/electrolyte interface: Micro- and macroscopic correlations between adsorption energies. J. Colloid Interface Sci. 306, 328 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    P. Zarzycki: Monte Carlo study of the topographic effects on the proton binding at the energetically heterogeneous metal oxide/electrolyte interface. Langmuir 22, 11234 (2006).

    CAS  Article  Google Scholar 

  44. 44.

    P. Zarzycki, R. Charmas, and P. Szabelski: Study of proton adsorption at heterogeneous oxide/electrolyte interface. Prediction of the surface potential using Monte Carlo simulations and 1-pK approach. J. Comput. Chem. 25, 704 (2004).

    CAS  Article  Google Scholar 

  45. 45.

    P. Szabelski, P. Zarzycki, and R. Charmas: A Monte Carlo study of proton adsorption at the heterogeneous oxide/electrolyte interface. Langmuir 20, 997 (2004).

    CAS  Article  Google Scholar 

  46. 46.

    D. Frenkel and B. Smit: Understanding Molecular Simulations: From Algorithms to Applications (Academic Press, San Diego, 2002).

    Google Scholar 

  47. 47.

    W.C. Swope, H.C. Andersen, P.H. Berens, and K.R. Wilson: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 76, 637 (1982).

    CAS  Article  Google Scholar 

  48. 48.

    H.C. Andersen: Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24 (1983).

    CAS  Article  Google Scholar 

  49. 49.

    R.M. Handler, A.J. Frierdich, C.M. Johnson, K.M. Rosso, B.L. Beard, C. Wang, D.E. Latta, A. Neumann, T. Pasakarnis, W.A.P.J. Premaratne, and M.M. Scherer: Fe(II)-catalyzed recrystallization of goethite revisited. Environ. Sci. Technol. 48, 11302 (2014).

    CAS  Article  Google Scholar 

  50. 50.

    P. Venema, T. Hiemstra, P.G. Weidler, and W.H. van Riemsdijk: Intrinsic proton affinity of reactive surface groups of metal (Hydr)oxides: Application to iron (Hydr)oxides. J. Colloid Interface Sci. 198, 282 (1998).

    CAS  Article  Google Scholar 

  51. 51.

    D.W. Walker and J.J. Dongarra: MPI: A standard message passing interface. Supercomputer 12, 56 (1996).

    Google Scholar 

  52. 52.

    W. Gropp, E. Lusk, N. Doss, and A. Skjellum: A high-performance, portable implementation of the MPI message passing interface standard. Parallel Comput. 22, 789 (1996).

    Article  Google Scholar 

  53. 53.

    D. Spagnoli, B. Gilbert, G.A. Waychunas, and J.F. Banfield: Prediction of the effects of size and morphology on the structure of water around hematite nanoparticles. Geochim. Cosmochim. Acta 73, 4023 (2009).

    CAS  Article  Google Scholar 

  54. 54.

    J.J. De Yoreo, U.P. Pupa, A.J. Nico, R. Lee Penn, S. Whitelam, D. Joester, H. Zhang, J.D. Rimer, A. Navrotsky, J.F. Banfield, A.F. Wallace, F. Marc Michel, F.C. Meldrum, H. Cölfen, and P.M. Dove: Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article  CAS  Google Scholar 

  55. 55.

    X. Zhang, Y. He, M.L. Sushko, J. Liu, L. Luo, J.J. De Yoreo, S.X. Mao, C. Wang, and K.M. Rosso: Direction-specific van der Waals attraction between rutile TiO2 nanocrystals. Science 356, 434 (2017).

    CAS  Article  Google Scholar 

  56. 56.

    X. Zhang, Z. Shen, J. Liu, S.N. Kerisit, M.E. Bowden, M.L. Sushko, J.J. De Yoreo, and K.M. Rosso: Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment. Nat. Commun. 8, 835 (2017).

    CAS  Article  Google Scholar 

  57. 57.

    Y. Liu, Y. Zhang, G. Wu, and J. Hu: Coexistence of liquid and solid phases of Bmim-PF6 ionic liquid on mica surfaces at room temperature. J. Am. Chem. Soc. 128, 7456 (2006).

    CAS  Article  Google Scholar 

  58. 58.

    L. Tamam, B.M. Ocko, H. Reichert, and M. Deutsch: Checkerboard self-patterning of an ionic liquid film on mercury. Phys. Rev. Lett. 106, 197801 (2011).

    CAS  Article  Google Scholar 

  59. 59.

    C. Merlet, D.T. Limmer, M. Salanne, R. van Roij, P.A. Madden, D. Chandler, and B. Rotenberg: The electric double layer has a life of its own. J. Phys. Chem. C 118, 18291 (2014).

    CAS  Article  Google Scholar 

  60. 60.

    A.A. Kornyshev and R. Qiao: Three-dimensional double layers. J. Phys. Chem. C 118, 18285 (2014).

    CAS  Article  Google Scholar 

  61. 61.

    M. Valtiner, X. Banquy, K. Kristiansen, G.W. Greene, and J.N. Israelachvili: The electrochemical surface forces apparatus: The effect of surface roughness, electrostatic surface potentials, and anodic oxide growth on interaction forces, and friction between dissimilar surfaces in aqueous solutions. Langmuir 28, 13080 (2012).

    CAS  Article  Google Scholar 

  62. 62.

    A. Voukadinova, M. Valiskó, and D. Gillespie: Assessing the accuracy of three classical density functional theories of the electrical double layer. Phys. Rev. E 98, 012116 (2018).

    CAS  Article  Google Scholar 

  63. 63.

    F. Jiménez-Ángeles and M. Lozada-Cassou: A model macroion solution next to a charged wall: Overcharging, charge reversal, and charge inversion by macroions. J. Phys. Chem. B 108, 7286 (2004).

    Article  CAS  Google Scholar 

  64. 64.

    J. Forsman: A simple correlation-corrected Poisson−Boltzmann theory. J. Phys. Chem. B 108, 9236 (2004).

    CAS  Article  Google Scholar 

  65. 65.

    M.L. Sushko and K.M. Rosso: The origin of facet selectivity and alignment in anatase TiO2 nanoparticles in electrolyte solutions: Implications for oriented attachment in metal oxides. Nanoscale 8, 19714 (2016).

    CAS  Article  Google Scholar 

  66. 66.

    Z. Shen, J. Chun, K.M. Rosso, and C.J. Mundy: Surface chemistry affects the efficacy of the hydration force between two ZnO\(\left( {10\bar 1\bar 0} \right)\). J. Phys. Chem. C 122, 12259 (2018).

    CAS  Article  Google Scholar 

  67. 67.

    S.V. Yanina and K.M. Rosso: Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science 320, 218 (2008).

    CAS  Article  Google Scholar 

Download references


This material is based on work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, through its Geosciences programs at LBNL (under Contract DE-AC02-05CH11231) and PNNL.

Author information



Corresponding author

Correspondence to Piotr Zarzycki.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zarzycki, P., Colla, C.A., Gilbert, B. et al. Lateral water structure connects metal oxide nanoparticle faces. Journal of Materials Research 34, 456–464 (2019).

Download citation