Indentation size effect in aqueous electrophoretic deposition zirconia dental ceramic

Abstract

Highly dense zirconia dental ceramic coatings were fabricated by aqueous electrophoretic deposition (EPD) and subsequently sintered between 1250 and 1450 °C. Microstructural examination revealed that aqueous EPDZrO2 coatings possessed a tetragonal phase structure and the grain size increased with increasing sintering temperature. Nanoindentation study proved that the aqueous EPDZrO2 coating also had excellent mechanical properties. The effect of different applied loads on hardness and elastic modulus of the 1350 °C-sintered sample at room temperature was investigated by the method of progressive multicycle measurement nanoindentation. The simulative experiment proved that hardness of aqueous EPDZrO2 exhibited reverse indentation size effect (ISE) behavior and then displayed the normal ISE response. The analysis indicates that the reverse ISE is attributed to the relaxation of surface stresses resulting from indentation cracks at small loads and normal ISE is caused by geometrically necessary dislocations. The tetragonal—monoclinic stress-induced phase transformation during nanoindentation is the primary cause of dental zirconia failures.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    Y. Zhu, R. Zhu, J. Ma, Z. Weng, Y. Wang, X. Shi, Y. Li, X. Yan, Z. Dong, J. Xu, C. Tang, and L. Jin: In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Biomed. Mater. 10, 055009 (2015).

    Article  CAS  Google Scholar 

  2. 2.

    G.M. Tartaglia, E. Sidoti, and C. Sforza: Seven-year prospective clinical study on zirconia-based single crowns and fixed dental prostheses. Clin. Oral Invest. 19, 1137 (2015).

    Article  Google Scholar 

  3. 3.

    Q.N. Sonza, A. Della Bona, and M. Borba: Effect of the infrastructure material on the failure behavior of prosthetic crowns. Dent. Mater. 30, 578 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    M-S. Kwon, S-Y. Oh, and S-A. Cho: Two-body wear comparison of zirconia crown, gold crown, and enamel against zirconia. J. Mech. Behav. Biomed. Mater. 47, 21 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    A.R. Alao and L. Yin: Nano-scale mechanical properties and behavior of pre-sintered zirconia. J. Mech. Behav. Biomed. Mater. 36, 21 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    M. Ferrari, A. Vichi, and F. Zarone: Zirconia abutments and restorations: From laboratory to clinical investigations. Dent. Mater. 31, e63 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    M. Ozcan and M. Bernasconi: Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J. Adhes. Dent. 17, 7 (2015).

    Google Scholar 

  8. 8.

    N.R.F.A. Silva, I. Sailer, Y. Zhang, P.G. Coelho, P.C. Guess, A. Zembic, and R.J. Kohal: Performance of zirconia for dental healthcare. Materials 3, 863 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    J.G. Wittneben, R.F. Wright, H.P. Weber, and G.O. Gallucci: A systematic review of the clinical performance of CAD/CAM single-tooth restorations. Int. J. Prosthod. 22, 466 (2009).

    Google Scholar 

  10. 10.

    S.B. Patzelt, B.C. Spies, and R.J. Kohal: CAD/CAM-fabricated implant-supported restorations: A systematic review. Clin. Oral Implants Res. 26 (Suppl. 11), 77 (2015).

    Article  Google Scholar 

  11. 11.

    I. Denry and J.R. Kelly: State of the art of zirconia for dental applications. Dent. Mater. 24, 299 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    P.F. Manicone, P. Rossi Iommetti, and L. Raffaelli: An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 35, 819 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    T. Nakamura, H. Nishida, T. Sekino, M. Nawa, K. Wakabayashi, S. Kinuta, Y. Mutobe, and H. Yatani: Electrophoretic deposition zirconia/alumina of ceria-stabilized zironia/alumina powder. Dent. Mater. J. 26, 623 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    K. Raju and D.H. Yoon: Electrophoretic deposition of BaTiO3 in an aqueous suspension using asymmetric alternating current. Mater. Lett. 110, 188 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    D.H. Yoon, Muksin, and K. Raju: Alternating current electrophoretic deposition (AC-EPD) of SiC nanoparticles in an aqueous suspension for the fabrication of SiCf/SiC composites. Dig. J. Nanomater. Bios. 10, 1103 (2015).

    Google Scholar 

  16. 16.

    A. Chávez-Valdez and A.R. Boccaccini: Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods. Electrochim. Acta 65, 70 (2012).

    Article  CAS  Google Scholar 

  17. 17.

    L. Besra and M. Liu: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    K. Raju, H-W. Yu, and D-H. Yoon: Aqueous electrophoretic deposition of SiC using asymmetric AC electric fields. Ceram. Int. 40, 12609 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    A. Chavez-Valdez, M. Herrmann, and A.R. Boccaccini: Alternating current electrophoretic deposition (EPD) of TiO2 nanoparticles in aqueous suspensions. J. Colloid Interface Sci. 375, 102 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    M. Ammam: Electrophoretic deposition under modulated electric fields: A review. RSC Adv. 2, 7633 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    M. Majic Renjo, L. Curkovic, S. Stefancic, and D. Coric: Indentation size effect of Y-TZP dental ceramics. Dent. Mater. 30, e371 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    E.K. Mahoney, R. Rohanizadeh, F.S. Ismail, N.M. Kilpatrick, and M.V. Swain: Mechanical properties and microstructure of hypomineralised enamel of permanent teeth. Biomaterials 25, 5091 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    E. Mahoney, A. Holt, M. Swain, and N. Kilpatrick: The hardness and modulus of elasticity of primary molar teeth:an ultra-micro-indentation study. J. Dent. 28, 589 (2000).

    CAS  Article  Google Scholar 

  24. 24.

    L. Angker and M.V. Swain: Nanoindentation: Application to dental hard tissue investigations. J. Mater. Res. 21, 1893 (2011).

    Article  Google Scholar 

  25. 25.

    A. Apratim, P. Eachempati, K.K. Krishnappa Salian, V. Singh, S. Chhabra, and S. Shah: Zirconia in dental implantology: A review. J. Int. Soc. Prev. Community Dent. 5, 147 (2015).

    Article  Google Scholar 

  26. 26.

    S. Stemmer, J. Vleugels, and O. Van Der Biest: Grain boundary segregation in high-purity, yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). J. Eur. Ceram. Soc. 18, 1565 (1998).

    CAS  Article  Google Scholar 

  27. 27.

    M.L. Mecartney: Influence of an amorphous second phase on the properties of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). J. Am. Ceram. Soc. 70, 54 (1987).

    CAS  Article  Google Scholar 

  28. 28.

    L. Besra, T. Uchikoshi, T.S. Suzuki, and Y. Sakka: Bubble-free aqueous electrophoretic deposition (EPD) by pulse-potential application. J. Am. Ceram. Soc. 91, 3154 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    A.R. Alao and L. Yin: Loading rate effect on the mechanical behavior of zirconia in nanoindentation. Mater. Sci. Eng., A 619, 247 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    L. Shao, D. Jiang, and J. Gong: Nanoindentation characterization of the hardness of zirconia dental ceramics. Adv. Eng. Mater. 15, 704 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    M. Guazzato, M. Albakry, S.P. Ringer, and M.V. Swain: Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent. Mater. 20, 449 (2004).

    CAS  Article  Google Scholar 

  32. 32.

    Z.H. Cao, H.M. Lu, X.K. Meng, and A.H.W. Ngan: Indentation size dependent plastic deformation of nanocrystalline and ultrafine grain Cu films at nanoscale. J. Appl. Phys. 105, 083521 (2009).

    Article  CAS  Google Scholar 

  33. 33.

    G. Xiao, G. Yuan, C. Jia, X. Yang, Z. Li, and X. Shu: Strain rate sensitivity of Sn–3.0Ag–0.5Cu solder investigated by nanoindentation. Mater. Sci. Eng., A 613, 336 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    T. Ebisu and S. Horibe: Analysis of the indentation size effect in brittle materials from nanoindentation load—displacement curve. J. Eur. Ceram. Soc. 30, 2419 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    J.M. Luo, C.Y. Dai, Y.G. Shen, and W.G. Mao: Elasto-plastic characteristics and mechanical properties of as-sprayed 8 mol% yttria-stabilized zirconia coating under nano-scales measured by nanoindentation. Appl. Surf. Sci. 309, 271 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    T. Zhu, A. Bushby, and D. Dunstan: Size effect in the initiation of plasticity for ceramics in nanoindentation. J. Mech. Phys. Solids 56, 1170 (2008).

    CAS  Article  Google Scholar 

  37. 37.

    X.J. Ren, R.M. Hooper, C. Griffiths, and J.L. Henshall: Indentation size effect in ceramics: Correlation with H/E. J. Mater. Sci. Lett. 22, 1105 (2003).

    CAS  Article  Google Scholar 

  38. 38.

    T.F. Page, W.C. Oliver, and C.J. McHargue: The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7, 450 (2011).

    Article  Google Scholar 

  39. 39.

    H. Li and R.C. Bradt: The effect of indentation-induced cracking on the apparent microhardness. J. Mater. Sci. 31, 1065 (1996).

    CAS  Article  Google Scholar 

  40. 40.

    K. Sangwal: Review: Indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids-some basic concepts and trends. Cryst. Res. Technol. 44, 1019 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    K. Sangwal and B. Surowska: Study of indentation size effect and microhardness of SrLaAlO4 and SrLaGaO4 single crystals. Mater. Res. Innovations 7, 91 (2016).

    Article  Google Scholar 

  42. 42.

    K. Sangwal and A. Kłos: Study of microindentation hardness of different planes of gadolinium calcium oxyborate single crystals. Cryst. Res. Technol. 40, 429 (2005).

    CAS  Article  Google Scholar 

  43. 43.

    S. Sebastian and M.A. Khadar: Microhardness indentation size effect studies in 60B2O3-(40-x) PbO-xMCl2 and 50B2O3(50-x) PbO-xMCl2 (M = Pb, Cd) glasses. J. Mater. Sci. 40, 1655 (2005).

    CAS  Article  Google Scholar 

  44. 44.

    S.J. Bull: On the origins and mechanisms of the indentation size effect. Z. Metallkd. 94, 787 (2003).

    CAS  Article  Google Scholar 

  45. 45.

    K. Sangwal: On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 63, 145 (2000).

    CAS  Article  Google Scholar 

  46. 46.

    N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475 (1994).

    CAS  Article  Google Scholar 

  47. 47.

    A.A. Elmustafa, J.A. Eastman, M.N. Rittner, J.R. Weertman, and D.S. Stone: Indentation size effect: Large grained aluminum versus nanocrystalline aluminum-zirconium alloys. Scr. Mater. 43, 951 (2000).

    CAS  Article  Google Scholar 

  48. 48.

    E.Q. Liu, H.F. Wang, G.S. Xiao, G.Z. Yuan, and X.F. Shu: Creep-related micromechanical behavior of zirconia-based ceramics investigated by nanoindentation. Ceram. Int. 41, 12939 (2015).

    CAS  Article  Google Scholar 

  49. 49.

    L. Jin: Property study of nano-zirconia formed by aqueous electrophoretic deposition. In General Session & Exhibition of the IADR/AADR/CADR No.89 (Sage Publications, San Diego, 2011).

    Google Scholar 

  50. 50.

    K.L. Johnson: Contact Mechanics (Cambridge University Press, 1996).

    Google Scholar 

  51. 51.

    W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2011).

    Article  Google Scholar 

  52. 52.

    I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  53. 53.

    G.M. Pharr, W.C. Oliver, and F.R. Brotzen: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613 (2011).

    Article  Google Scholar 

  54. 54.

    X. Li and B. Bhushan: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (51501074), China Postdoctoral Science Foundation (2016M602983), and Postdoctoral Science Foundation of Jiangsu (1601047A). The authors also thank Dr. I. Asempah for his valuable help in improving the language of the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Lei Jin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Asempah, I., Li, X. et al. Indentation size effect in aqueous electrophoretic deposition zirconia dental ceramic. Journal of Materials Research 34, 555–562 (2019). https://doi.org/10.1557/jmr.2018.464

Download citation