Kinetic control of CeO2 nanoparticles for catalytic CO oxidation


This article reports on the growth kinetics of cerium oxide (CeO2) nanoparticles prepared via a sintering method. By varying the sintering temperatures and periods of time, particle size of CeO2 nanoparticles was tuned from 11 to 100 nm. Ostwald ripening mechanism prevails in the growth process, and the growth kinetics is determined to follow an equation, D5 = 16.25 + 3.6 × 1020 exp(−344.20/RT) in the temperature range of 700 to 1000°C. After dispersing Pt on CeO2 nanoparticles, the size effect for the catalytic performance of the CO oxidation reaction was researched. When temperature and period of time are set at 700 °C and 2 h, respectively, dispersion of Pt onto CeO2 nanoparticles led to the largest quantity of chemisorbed oxygen species on the surface and the best catalytic performance. The findings reported here would provide a feasible path for the preparation of advanced catalysts in the future and moreover to discover novel size-dependent supports for many catalytic applications.

This is a preview of subscription content, access via your institution.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:


  1. 1.

    J. Sun and X. Bao: Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts. Chem.–Eur J. 14, 7478 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    N. Ta, J. Liu, S. Chenna, P.A. Crozier, Y. Li, A. Chen, and W. Shen: Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J. Am. Chem. Soc. 134, 20585 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    R. Carrasquillo-Flores, I. Ro, M.D. Kumbhalkar, S. Burt, C.A. Carrero, A.C. Alba-Rubio, J.T. Miller, I. Hermans, G.W. Huber, and J.A. Dumesic: Reverse water–gas shift on interfacial sites formed by deposition of oxidized molybdenum moieties onto gold nanoparticles. J. Am. Chem. Soc. 137, 10317 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    M. Shekhar, J. Wang, W.S. Lee, W.D. Williams, S.M. Kim, E.A. Stach, J.T. Miller, W.N. Delgass, and F.H. Ribeiro: Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 134, 4700 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    H. Asakura, S. Hosokawa, T. Ina, K. Kato, K. Nitta, K. Uera, T. Uruga, H. Miura, T. Shishido, J. Ohyama, A. Satsuma, K. Sato, A. Yamamoto, S. Hinokuma, H. Yoshida, M. Machida, S. Yamazoe, T. Tsukuda, K. Teramura, and T. Tanaka: Dynamic behavior of Rh species in Rh/Al2O3 model catalyst during three-way catalytic reaction: An operando X-ray absorption spectroscopy study. J. Am. Chem. Soc. 140, 176 (2017).

    Article  Google Scholar 

  6. 6.

    A.M. Gänzler, M. Casapu, P. Vernoux, S. Loridant, F.J. Cadete Santos Aires, T. Epicier, B. Betz, R. Hoyer, and J.D. Grunwaldt: Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew. Chem., Int. Ed. 56, 13078 (2017).

    Article  Google Scholar 

  7. 7.

    O.P. Moreno, R.G. Pérez, R.P. Merino, M.C. Portillo, G.H. Tellez, E.R. Rosas, and M.Z. Tototzintle: CeO2 nanoparticles growth by chemical bath and its thermal annealing treatment in air atmosphere. Optik 148, 142 (2017).

    Article  Google Scholar 

  8. 8.

    S. Lakhwani and M.N. Rahaman: Hydrothermal coarsening of CeO2 particles. J. Mater. Res. 14, 1455 (1999).

    CAS  Article  Google Scholar 

  9. 9.

    L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, X.I.P. Hernandez, A. DeLaRiva, M. Wang, M.H. Engelhard, L. Kovarik, A.K. Datye, and Y. Wang: Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    C. Yang, X. Yu, P.N. Pleßow, S. Heißler, P.G. Weidler, A. Nefedov, F. Studt, Y. Wang, and C. Wöll: Rendering photoreactivity to ceria: The role of defects. Angew. Chem. Int. Ed. 56, 14301 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    S. Kattel, P. Liu, and J.G. Chen: Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 139, 9739 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    A.M. Abdel-Mageed, G. Kucerova, J. Bansmann, and R.J. Behm: Active Au species during the low-temperature water gas shift reaction on Au/CeO2: A time-resolved operando XAS and DRIFTS study. ACS Catal. 7, 6471 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    C.E. Stere, J.A. Anderson, S. Chansai, J.J. Delgado, A. Goguet, W.G. Graham, C. Hardacre, S.F.R. Taylor, X. Tu, Z. Wang, and H. Yang: Non-thermal plasma activation of gold-based catalysts for low-temperature water–gas shift catalysis. Angew. Chem. Int. Ed. 56, 5579 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    R. Wang, R. Dangerfield, and D. Li: Low-temperature CO conversion on 1 wt% Pt/CeO2 nanocubes. Microsc. Microanal. 19, 1700 (2013).

    Article  Google Scholar 

  15. 15.

    H. Jeong, J. Bae, J.W. Han, and H. Lee: Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation. ACS Catal. 7, 7097 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    H. He, P. Yang, J. Li, R. Shi, L. Chen, A. Zhang, and Y. Zhu: Controllable synthesis, characterization, and CO oxidation activity of CeO2 nanostructures with various morphologies. Ceram. Int. 42, 7810 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    D. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao, W. Huang, Y. Li, J. Zhu, P. Liu, F. Yang, G. Wang, and X. Bao: Enhancing CO2 electroreduction with the metal–oxide interface. J. Am. Chem. Soc. 139, 5652 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    R. Podor, N. Clavier, J. Ravaux, L. Claparede, and N. Dacheux: In situ HT-ESEM observation of CeO2 grain growth during sintering. J. Am. Ceram. Soc. 95, 3683 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    H.H. Ko, G. Yang, M.C. Wang, and X. Zhao: Thermal behavior and crystallization kinetics of cerium dioxide precursor powders. Ceram. Int. 40, 13953 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Zhang, L. Li, J. Zheng, Q. Li, Y. Zuo, E. Yang, and G. Li: Two-step grain-growth kinetics of sub-7 nm SnO2 nanocrystal under hydrothermal condition. J. Phys. Chem. C 119, 19505 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    H. Li, L. Li, S. Chen, Y. Zhang, and G. Li: Kinetic control of hexagonal Mg(OH)2 nanoflakes for catalytic application of preferential CO oxidation. Chin. J. Chem. 35, 903 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Y. Wang, L. Li, Y. Zhang, X. Chen, S. Fang, and G. Li: Growth kinetics, cation occupancy, and magnetic properties of multimetal oxide nanoparticles: A case study on spinel NiFe2O4. J. Phys. Chem. C 121, 19467 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    E. Yang, G. Li, J. Zheng, C. Fu, Y. Zheng, and L. Li: Kinetic control over YVO4: Eu3+ nanoparticles for tailored structure and luminescence properties. J. Phys. Chem. C 118, 3820 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    S. Chen, L. Li, W. Hu, X. Huang, Q. Li, Y. Xu, Y. Zuo, and G. Li: Anchoring high-concentration oxygen vacancies at interfaces of CeO2–x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl. Mater. Interfaces 7, 22999 (2015).

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (Nos. 21871106, 21771075, and 21671077).

Author information



Corresponding author

Correspondence to Guangshe Li.

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, B., Li, H., Li, L. et al. Kinetic control of CeO2 nanoparticles for catalytic CO oxidation. Journal of Materials Research 34, 2201–2208 (2019).

Download citation