Interaction of water with oxide thin film model systems

Abstract

The interaction between water and oxide surfaces plays an important role in many technological applications and environmental processes. However, gaining fundamental understanding of processes at oxide—water interfaces is challenging because of the complexity of the systems. To this end, results of experimental and computational studies utilizing well-defined oxide surfaces help to gain molecular-scale insights into the properties and reactivity of water on oxide surfaces. This is a necessary basis for the understanding of oxide surface chemistry in more complex environments. This review highlights recent advances in the fundamental understanding of oxide—water interaction using surface science experiments. In particular, we will discuss the results on crystalline and well-defined supported thin film oxide samples of the alkaline earth oxides (MgO and CaO), silica (SiO2), and magnetite (Fe3O4). Several aspects of water—oxide interactions such as adsorption modes (molecular versus dissociative), formation of long-range ordered structures, and dissolution processes will be discussed.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

References

  1. 1.

    P.A. Thiel and T.E. Madey: The interaction of water with solid surfaces—Fundamental aspects. Surf. Sci. Rep. 7, 211 (1987).

    CAS  Google Scholar 

  2. 2.

    M.A. Henderson: The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1 (2002).

    CAS  Google Scholar 

  3. 3.

    A. Verdaguer, G.M. Sacha, H. Bluhm, and M. Salmeron: Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 106, 1478 (2006).

    CAS  Google Scholar 

  4. 4.

    G.E. Ewing: Ambient thin film water on insulator surfaces. Chem. Rev. 106, 1511 (2006).

    CAS  Google Scholar 

  5. 5.

    G.E. Brown, V.E. Henrich, W.H. Casey, D.L. Clark, C. Eggleston, A. Felmy, D.W. Goodman, M. Grätzel, G. Maciel, M.I. McCarthy, K.H. Nealson, D.A. Sverjensky, M.F. Toney, and J.M. Zachara: Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 99, 77 (1999).

    CAS  Google Scholar 

  6. 6.

    E. Bjornehohn, M.H. Hansen, A. Hodgson, L.M. Liu, D.T. Limmer, A. Michaelides, P. Pedevilla, J. Rossmeisl, H. Shen, G. Tocci, E. Tyrode, M.M. Walz, J. Werner, and H. Bluhm: Water at interfaces. Chem. Rev. 116, 7698 (2016).

    Google Scholar 

  7. 7.

    A. Hodgson and S. Haq: Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64, 381 (2009).

    CAS  Google Scholar 

  8. 8.

    J. Carrasco, A. Hodgson, and A. Michaelides: A molecular perspective of water at metal interfaces. Nat. Mater. 11, 667 (2012).

    CAS  Google Scholar 

  9. 9.

    R.R. Rao, M.J. Kolb, J. Hwang, A.F. Pedersen, A. Mehta, H. You, K.A. Stoerzinger, Z.X. Feng, H. Zhou, H. Bluhm, L. Giordano, I.E.L. Stephens, and Y. Shao-Horn: Surface orientation dependent water dissociation on rutile ruthenium dioxide. J. Phys. Chem. C 122, 17802 (2018).

    CAS  Google Scholar 

  10. 10.

    M. Schwarz, F. Faisal, S. Mohr, C. Hohner, K. Werner, T. Xu, T. Skala, N. Tsud, K.C. Prince, V. Matolin, Y. Lykhach, and J. Libuda: Structure-dependent dissociation of water on cobalt oxide. J. Phys. Chem. Lett. 9, 2763 (2018).

    CAS  Google Scholar 

  11. 11.

    X.L. Hu, J. Carrasco, J. Klimes, and A. Michaelides: Trends in water monomer adsorption and dissociation on flat insulating surfaces. Phys. Chem. Chem. Phys. 13, 12447 (2011).

    CAS  Google Scholar 

  12. 12.

    R.T. Mu, Z.J. Zhao, Z. Dohnalek, and J.L. Gong: Structural motifs of water on metal oxide surfaces. Chem. Soc. Rev. 46, 1785 (2017).

    CAS  Google Scholar 

  13. 13.

    M. Meier, J. Hulva, Z. Jakub, J. Pavelec, M. Setvin, R. Bliem, M. Schmid, U. Diebold, C. Franchini, and G.S. Parkinson: Water agglomerates on Fe3O4(001). Proc. Natl. Acad. Sci. U. S. A 115, E5642 (2018).

    CAS  Google Scholar 

  14. 14.

    R. Wlodarczyk, M. Sierka, K. Kwapien, J. Sauer, E. Carrasco, A. Aumer, J.F. Gomes, M. Sterrer, and H-J. Freund: Structures of the ordered water monolayer on MgO(001). J. Phys. Chem. C 115, 6764 (2011).

    CAS  Google Scholar 

  15. 15.

    P. Fenter and N.C. Sturchio: Mineral-water interfacial structures revealed by synchrotron X-ray scattering. Prog. Surf. Sci. 77, 171 (2004).

    CAS  Google Scholar 

  16. 16.

    J. Heidberg, B. Redlich, and D. Wetter: Adsorption of water vapor on the MgO(100) single-crystal surface. Ber. Bunsenges. Phys. Chem. 99, 1333 (1995).

    CAS  Google Scholar 

  17. 17.

    B. Meyer, D. Marx, O. Dulub, U. Diebold, M. Kunat, D. Langenberg, and C. Wöll: Partial dissociation of water leads to stable superstructures on the surface of zinc oxide. Angew. Chem., Int. Ed. 43, 6642 (2004).

    Google Scholar 

  18. 18.

    I.M. Brookes, C.A. Muryn, and G. Thornton: Imaging water dissociation on TiO2(110). Phys. Rev. Lett. 87, 266103 (2001).

    CAS  Google Scholar 

  19. 19.

    J. Balajka, M.A. Hines, W.J.I. DeBenedetti, M. Komora, J. Pavelec, M. Schmid, and U. Diebold: High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution. Science 361, 786 (2018).

    CAS  Google Scholar 

  20. 20.

    U. Diebold: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).

    CAS  Google Scholar 

  21. 21.

    G.A. Kimmel, M. Baer, N.G. Petrik, J. VandeVondele, R. Rousseau, and C.J. Mundy: Polarization- and azimuth-resolved infrared spectroscopy of water on TiO2(110): Anisotropy and the hydrogen-bonding network. J. Phys. Chem. Lett. 3, 778 (2012).

    CAS  Google Scholar 

  22. 22.

    N.G. Petrik and G.A. Kimmel: Reaction kinetics of water molecules with oxygen vacancies on rutile TiO2(110). J. Phys. Chem. C 119, 23059 (2015).

    CAS  Google Scholar 

  23. 23.

    Y.M. Wang and C. Wöll: IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: Bridging the materials gap. Chem. Soc. Rev. 46, 1875 (2017).

    CAS  Google Scholar 

  24. 24.

    H.J. Freund, H. Kuhlenbeck, and V. Staemmler: Oxide surfaces. Rep. Prog. Phys. 59, 283 (1996).

    CAS  Google Scholar 

  25. 25.

    C.T. Campbell: Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorption properties. Surf. Sci. Rep. 27, 1 (1997).

    CAS  Google Scholar 

  26. 26.

    F.P. Netzer and A. Fortunelli, eds.: Oxide Materials at the Two-dimensional Limit, Springer Series in Materials Science, Vol. 234 (Springer, Switzerland, 2016).

    Google Scholar 

  27. 27.

    N. Nilius: Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy. Surf. Sci. Rep. 64, 595 (2009).

    CAS  Google Scholar 

  28. 28.

    S. Surnev, M.G. Ramsey, and F.P. Netzer: Vanadium oxide surface studies. Prog. Surf. Sci. 73, 117 (2003).

    CAS  Google Scholar 

  29. 29.

    G. Kresse, M. Schmid, E. Napetschnig, M. Shishkin, L. Köhler, and P. Varga: Structure of the ultrathin aluminum oxide film on NiAl(110). Science 308, 1440 (2005).

    CAS  Google Scholar 

  30. 30.

    C.R. Henry: Surface studies of supported model catalysts. Surf. Sci. Rep. 31, 231 (1998).

    CAS  Google Scholar 

  31. 31.

    S. Schintke, S. Messerli, M. Pivetta, F. Patthey, L. Libioulle, M. Stengel, A. De Vita, and W-D. Schneider: Insulator at the ultrathin limit: MgO on Ag(001). Phys. Rev. Lett. 87, 276801 (2001).

    CAS  Google Scholar 

  32. 32.

    M. Klaua, D. Ullmann, J. Barthel, W. Wulfhekel, J. Kirschner, R. Urban, T.L. Monchesky, A. Enders, J.F. Cochran, and B. Heinrich: Growth, structure, electronic, and magnetic properties of MgO/Fe(001) bilayers and Fe/MgO/Fe(001) trilayers. Phys. Rev. B 64, 134411 (2001).

    Google Scholar 

  33. 33.

    M.C. Wu, J.S. Corneille, C.A. Estrada, J.W. He, and D.W. Goodman: Synthesis and characterization of ultra-thin MgO films on Mo(100). Chem. Phys. Lett. 182, 472 (1991).

    CAS  Google Scholar 

  34. 34.

    S. Benedetti, H.M. Benia, N. Nilius, S. Valeri, and H.J. Freund: Morphology and optical properties of MgO thin films on Mo(001). Chem. Phys. Lett. 430, 330 (2006).

    CAS  Google Scholar 

  35. 35.

    X. Shao, P. Myrach, N. Nilius, and H.J. Freund: Growth and morphology of calcium-oxide films grown on Mo(001). J. Phys. Chem. C 115, 8784 (2011).

    CAS  Google Scholar 

  36. 36.

    N. Nilius, S. Benedetti, Y. Pan, P. Myrach, C. Noguera, L. Giordano, and J. Goniakowski: Electronic and electrostatic properties of polar oxide nanostructures: MgO(111) islands on Au(111). Phys. Rev. B 86, 205410 (2012).

    Google Scholar 

  37. 37.

    J. Goniakowski, C. Finocchi, and C. Noguera: Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 71, 016501 (2008).

    Google Scholar 

  38. 38.

    F. Finocchi, A. Barbier, J. Jupille, and C. Noguera: Stability of rocksalt (111) polar surfaces: Beyond the octopole. Phys. Rev. Lett. 92, 136101 (2004).

    Google Scholar 

  39. 39.

    J. Pal, M. Smerieri, E. Celasco, L. Savio, L. Vattuone, and M. Rocca: Morphology of monolayer MgO films on Ag(100): Switching from corrugated islands to extended flat terraces. Phys. Rev. Lett. 112, 126102 (2014).

    Google Scholar 

  40. 40.

    J. Pal, M. Smerieri, E. Celasco, L. Savio, L. Vattuone, R. Ferrando, S. Tosoni, L. Giordano, G. Pacchioni, and M. Rocca: How growing conditions and interfacial oxygen affect the final morphology of MgO/Ag(100) films. J. Phys. Chem. C 118, 26091 (2014).

    CAS  Google Scholar 

  41. 41.

    K.P. McKenna and A.L. Shluger: Electron-trapping polycrystalline materials with negative electron affinity. Nat. Mater. 7, 859 (2008).

    CAS  Google Scholar 

  42. 42.

    S. Benedetti, P. Torelli, S. Valeri, H.M. Benia, N. Nilius, and G. Renaud: Structure and morphology of thin MgO films on Mo(001). Phys. Rev. B 78, 195411 (2008).

    Google Scholar 

  43. 43.

    S. Benedetti, F. Stavale, S. Valeri, C. Noguera, H.J. Freund, J. Goniakowski, and N. Nilius: Steering the growth of metal ad-particles via interface interactions between a MgO thin film and a Mo support. Adv. Funct. Mater. 23, 75 (2013).

    CAS  Google Scholar 

  44. 44.

    L. Giordano, F. Cinquini, and G. Pacchioni: Tuning the surface metal work function by deposition of ultrathin oxide films: Density functional calculations. Phys. Rev. B 73, 045414 (2006).

    Google Scholar 

  45. 45.

    H.M. Benia, P. Myrach, N. Nilius, and H.J. Freund: Structural and electronic characterization of the MgO/Mo(001) interface using STM. Surf. Sci. 604, 435 (2010).

    CAS  Google Scholar 

  46. 46.

    M. Sterrer, E. Fischbach, T. Risse, and H-J. Freund: Geometric characterization of a singly charged oxygen vacancy on a single-crystalline MgO(001) film by electron paramagnetic resonance spectroscopy. Phys. Rev. Lett. 94, 186101 (2005).

    Google Scholar 

  47. 47.

    M. Sterrer, E. Fischbach, M. Heyde, N. Nilius, H.P. Rust, T. Risse, and H.J. Freund: Electron paramagnetic resonance and scanning tunneling microscopy investigations on the formation of F+ and F0 color centers on the surface of thin MgO(001) films. J. Phys. Chem. B 110, 8665 (2006).

    CAS  Google Scholar 

  48. 48.

    X. Shao, N. Nilius, P. Myrach, H.J. Freund, U. Martinez, S. Prada, L. Giordano, and G. Pacchioni: Strain-induced formation of ultrathin mixed-oxide films. Phys. Rev. B 83, 245407 (2011).

    Google Scholar 

  49. 49.

    Y. Cui, X. Shao, M. Baldofski, J. Sauer, N. Nilius, and H.J. Freund: Adsorption, activation, and dissociation of oxygen on doped oxides. Angew. Chem., Int. Ed. 52, 11385 (2013).

    CAS  Google Scholar 

  50. 50.

    S. Sastry, P.G. Debenedetti, and F.H. Stillinger: Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554 (1998).

    CAS  Google Scholar 

  51. 51.

    R. Zallen: The Physics of Amorphous Solids (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004).

    Google Scholar 

  52. 52.

    L. Berthier and G. Biroli: Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011).

    CAS  Google Scholar 

  53. 53.

    J.C. Mauro and E.D. Zanotto: Two centuries of glass research: Historical trends, current status, and grand challenges for the future. Int. J. Appl. Glass Sci. 5, 313 (2014).

    Google Scholar 

  54. 54.

    W.H. Zachariasen: The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841 (1932).

    CAS  Google Scholar 

  55. 55.

    L. Lichtenstein, M. Heyde, and H-J. Freund: Atomic arrangement in two-dimensional silica: From crystalline to vitreous structures. J. Phys. Chem. C 116, 20426 (2012).

    CAS  Google Scholar 

  56. 56.

    D. Löffler, J.J. Uhlrich, M. Baron, B. Yang, X. Yu, L. Lichtenstein, L. Heinke, C. Büchner, M. Heyde, S. Shaikhutdinov, H-J. Freund, R. Włodarczyk, M. Sierka, and J. Sauer: Growth and structure of crystalline silica sheet on Ru(0001). Phys. Rev. Lett. 105, 146104 (2010).

    Google Scholar 

  57. 57.

    L. Lichtenstein, C. Büchner, B. Yang, S. Shaikhutdinov, M. Heyde, M. Sierka, R. Włodarczyk, J. Sauer, and H-J. Freund: The atomic structure of a metal-supported vitreous thin silica film. Angew. Chem., Int. Ed. 51, 404 (2012).

    CAS  Google Scholar 

  58. 58.

    L. Lichtenstein, M. Heyde, and H-J. Freund: Crystalline-vitreous interface in two dimensional silica. Phys. Rev. Lett. 109, 106101 (2012).

    Google Scholar 

  59. 59.

    X. Yu, B. Yang, J.A. Boscoboinik, S. Shaikhutdinov, and H-J. Freund: Support effects on the atomic structure of ultrathin silica films on metals. Appl. Phys. Lett. 100, 151608 (2012).

    Google Scholar 

  60. 60.

    P.Y. Huang, S. Kurasch, A. Srivastava, V. Skakalova, J. Kotakoski, A.V. Krasheninnikov, R. Hovden, Q. Mao, J.C. Meyer, J. Smet, D.A. Muller, and U. Kaiser: Direct imaging of a two-dimensional silica glass on graphene. Nano Lett. 12, 1081 (2012).

    CAS  Google Scholar 

  61. 61.

    E.I. Altman and U.D. Schwarz: Structural and electronic heterogeneity of two-dimensional amorphous silica layers. Adv. Mater. Interfaces 1, 1400108 (2014).

    Google Scholar 

  62. 62.

    R.M. Cornell and U. Schwertmann: The Iron Oxides (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004); pp. 1–7.

    Google Scholar 

  63. 63.

    G. Ertl, H. Knözinger, F. Schueth, and J. Weitkamp, eds.: Handbook of Heterogeneous Catalysis, Vol. 2, compl. rev. and enlarged ed. (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008).

    Google Scholar 

  64. 64.

    R. Zboril, M. Mashlan, and D. Petridis: Iron(III) oxides from thermal processes: Synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem. Mater. 14, 969 (2002).

    CAS  Google Scholar 

  65. 65.

    W. Weiss and W. Ranke: Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers. Prog. Surf. Sci. 70, 1 (2002).

    CAS  Google Scholar 

  66. 66.

    N.G. Condon, F.M. Leibsle, T. Parker, A.R. Lennie, D.J. Vaughan, and G. Thornton: Biphase ordering on Fe3O4(111). Phys. Rev. B 55, 15885 (1997).

    CAS  Google Scholar 

  67. 67.

    A. Barbieri, W. Weiss, M.A.V. Hove, and G.A. Somorjai: Magnetite Fe3O4(111): Surface structure by LEED crystallography and energetics. Surf. Sci. 302, 259 (1994).

    CAS  Google Scholar 

  68. 68.

    G.S. Parkinson: Iron oxide surfaces. Surf. Sci. Rep. 71, 272 (2016).

    CAS  Google Scholar 

  69. 69.

    A. Sala, H. Marchetto, Z.H. Qin, S. Shaikhutdinov, T. Schmidt, and H-J. Freund: Defects and inhomogeneities in Fe3O4(111) thin film growth on Pt(111). Phys. Rev. B 86, 155430 (2012).

    Google Scholar 

  70. 70.

    M. Melzer, J. Urban, H. Sack-Kongehl, K. Weiss, H-J. Freund, and R. Schlögl: Preparation of vanadium and vanadium oxide clusters by means of inert gas aggregation. Catal. Lett. 81, 219 (2002).

    CAS  Google Scholar 

  71. 71.

    W. Weiss and M. Ritter: Metal oxide heteroepitaxy: Stranski-Krastanov growth of iron oxides on Pt(111). Phys. Rev. B 59, 5201 (1999).

    CAS  Google Scholar 

  72. 72.

    D.T. Margulies, F.T. Parker, M.L. Rudee, F.E. Spada, J.N. Chapman, P.R. Aitchison, and A.E. Berkowitz: Origin of the anomalous magnetic behavior in single crystal Fe3O4 films. Phys. Rev. Lett. 79, 5201 (1997).

    Google Scholar 

  73. 73.

    M. Ritter and W. Weiss: Fe3O4(111) surface structure determined by LEED crystallography. Surf. Sci. 432, 81 (1999).

    CAS  Google Scholar 

  74. 74.

    S.K. Shaikhutdinov, M. Ritter, X.G. Wang, H. Over, and W. Weiss: Defect structures on epitaxial Fe3O4(111) films. Phys. Rev. B 60, 11062 (1999).

    CAS  Google Scholar 

  75. 75.

    C. Lemire, R. Meyer, V.E. Henrich, S. Shaikhutdinov, and H.J. Freund: The surface structure of Fe3O4(111) films as studied by CO adsorption. Surf. Sci. 572, 103 (2004).

    CAS  Google Scholar 

  76. 76.

    X. Li, J. Paier, J. Sauer, F. Mirabella, E. Zaki, F. Ivars-Barceló, S. Shaikhutdinov, and H.J. Freund: Surface termination of Fe3O4(111) films studied by CO adsorption revisited. J. Phys. Chem. B 122, 527 (2018).

    CAS  Google Scholar 

  77. 77.

    X. Zhao, X. Shao, Y. Fujimori, S. Bhattacharya, L.M. Ghiringhelli, H-J. Freund, M. Sterrer, N. Nilius, and S.V. Levchenko: Formation of water chains on CaO(001): What drives the 1D growth? J. Phys. Chem. Lett. 6, 1204 (2015).

    CAS  Google Scholar 

  78. 78.

    J. Carrasco, F. Illas, and N. Lopez: Dynamic ion pairs in the adsorption of isolated water molecules on alkaline-earth oxide(001) surfaces. Phys. Rev. Lett. 100, 016101 (2008).

    Google Scholar 

  79. 79.

    Y. Fujimori, X. Zhao, X. Shao, S.V. Levchenko, N. Nilius, M. Sterrer, and H-J. Freund: Interaction of water with the CaO(001) surface. J. Phys. Chem. C 120, 5565 (2016).

    CAS  Google Scholar 

  80. 80.

    D. Ferry, A. Glebov, V. Senz, J. Suzanne, J.P. Toennies, and H. Weiss: Observation of the second ordered phase of water on the MgO(100) surface: Low energy electron diffraction and helium atom scattering studies. J. Chem. Phys. 105, 1697 (1996).

    CAS  Google Scholar 

  81. 81.

    D. Halwidl, B. Stöger, W. Mayr-Schmölzer, J. Pavelec, D. Fobes, J. Peng, Z.Q. Mao, G.S. Parkinson, M. Schmid, F. Mittendorfer, J. Redinger, and U. Diebold: Adsorption of water at the SrO surface of ruthenates. Nat. Mater. 15, 450 (2016).

    CAS  Google Scholar 

  82. 82.

    Y.D. Kim, R.M. Lynden-Bell, A. Alavi, J. Stulz, and D.W. Goodman: Evidence for partial dissociation of water on flat MgO(100) surfaces. Chem. Phys. Lett. 352, 318 (2002).

    CAS  Google Scholar 

  83. 83.

    U. Leist, W. Ranke, and K. Al-Shamery: Water adsorption and growth of ice on epitaxial Fe3O4(111), FeO(111), and Fe2O3(biphase). Phys. Chem. Chem. Phys. 5, 2435 (2003).

    CAS  Google Scholar 

  84. 84.

    Y. Joseph, C. Kuhrs, W. Ranke, M. Ritter, and W. Weiss: Adsorption of water on FeO(111) and Fe3O4(111): Identification of active sites for dissociation. Chem. Phys. Lett. 314, 195 (1999).

    CAS  Google Scholar 

  85. 85.

    Y. Joseph, W. Ranke, and W. Weiss: Water on FeO(111) and Fe3O4(111): Adsorption behavior on different surface terminations. J. Phys. Chem. B 104, 3224 (2000).

    CAS  Google Scholar 

  86. 86.

    P.A. Redhead: Thermal desorption of gases. Vacuum 12, 203 (1962).

    CAS  Google Scholar 

  87. 87.

    A.M. de Jong and J.W. Niemantsverdriet: Thermal desorption analysis: Comparative test of ten commonly applied procedures. Surf. Sci. 233, 355 (1990).

    Google Scholar 

  88. 88.

    F. Mirabella, E. Zaki, F. Ivars-Barcelo, X. Li, J. Paier, J. Sauer, S. Shaikhutdinov, and H-J. Freund: Cooperative formation of long-range ordering in water ad-layers on Fe3O4(111). Angew. Chem., Int. Ed. 57, 1409 (2017).

    Google Scholar 

  89. 89.

    E. Habenschaden and J. Küppers: Evaluation of flash desorption spectra. Surf. Sci. Lett. 138, L147 (1984).

    CAS  Google Scholar 

  90. 90.

    S.L. Tait, Z. Dohnálek, C.T. Campbell, and B.D. Kay: n-alkanes on MgO(100). I. Coverage-dependent desorption kinetics of n-butane. J. Chem. Phys. 122, 164707 (2005).

    Google Scholar 

  91. 91.

    P. Dementyev, K-H. Dostert, F. Ivars-Barceló, C.P. O’Brien, F. Mirabella, S. Schauermann, X. Li, J. Paier, J. Sauer, and H-J. Freund: Water interaction with iron oxides. Angew. Chem., Int. Ed. 54, 13942 (2015).

    CAS  Google Scholar 

  92. 92.

    P. Liu, T. Kendelewicz, G.E. Brown, G.A. Parks, and P. Pianetta: Reaction of water with vacuum-cleaved CaO(100) surfaces: An X-ray photoemission spectroscopy study. Surf. Sci. 416, 326 (1998).

    CAS  Google Scholar 

  93. 93.

    P. Liu, T. Kendelewicz, G.E. Gordon, and G.A. Parks: Reaction of water with MgO(100) surfaces. Part I: Synchrotron X-ray photoemission studies of low-defect surfaces. Surf. Sci. 412–13, 287 (1998).

    Google Scholar 

  94. 94.

    E. Carrasco, M.A. Brown, M. Sterrer, H-J. Freund, K. Kwapien, M. Sierka, and J. Sauer: Thickness-dependent hydroxylation of MgO(001) thin films. J. Phys. Chem. C 114, 18207 (2010).

    CAS  Google Scholar 

  95. 95.

    L. Savio, E. Celasco, L. Vattuone, M. Rocca, and P. Senet: MgO/Ag(100): Confined vibrational modes in the limit of ultrathin films. Phys. Rev. B 67, 075420 (2003).

    Google Scholar 

  96. 96.

    F. Ringleb, Y. Fujimori, H.F. Wang, H. Ariga, E. Carrasco, M. Sterrer, H.J. Freund, L. Giordano, G. Pacchioni, and J. Goniakowski: Interaction of water with FeO(111)/Pt(111): Environmental effects and influence of oxygen. J. Phys. Chem. C 115, 19328 (2011).

    CAS  Google Scholar 

  97. 97.

    L. Giordano, M. Lewandowski, I.M.N. Groot, Y.N. Sun, J. Goniakowski, C. Noguera, S. Shaikhutdinov, G. Pacchioni, and H.J. Freund: Oxygen-induced transformations of an FeO(111) film on Pt(111): A combined DFT and STM study. J. Phys. Chem. C 114, 21504 (2010).

    CAS  Google Scholar 

  98. 98.

    Y.N. Sun, L. Giordano, J. Goniakowski, M. Lewandowski, Z.H. Qin, C. Noguera, S. Shaikhutdinov, G. Pacchioni, and H.J. Freund: The interplay between structure and CO oxidation catalysis on metal-supported ultrathin oxide films. Angew. Chem., Int. Ed. 49, 4418 (2010).

    CAS  Google Scholar 

  99. 99.

    Y.N. Sun, Z.H. Qin, M. Lewandowski, E. Carrasco, M. Sterrer, S. Shaikhutdinov, and H.J. Freund: Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J. Catal. 266, 359 (2009).

    CAS  Google Scholar 

  100. 100.

    S. Shaikhutdinov and H.J. Freund: Ultrathin silica films on metals: The long and winding road to understanding the atomic structure. Adv. Mater. 25, 49 (2013).

    CAS  Google Scholar 

  101. 101.

    B. Yang, E. Emmez, W.E. Kaden, X. Yu, J.A. Boscoboinik, M. Sterrer, S. Shaikhutdinov, and H-J. Freund: Hydroxylation of metal-supported sheet-like silica films. J. Phys. Chem. C 117, 8336 (2013).

    CAS  Google Scholar 

  102. 102.

    X. Yu, E. Emmez, Q. Pan, B. Yang, S. Pomp, W.E. Kaden, M. Sterrer, S. Shaikhutdinov, H-J. Freund, I. Goikoetxea, R. Wlodarczyk, and J. Sauer: Electron stimulated hydroxylation of a metal supported silicate film. Phys. Chem. Chem. Phys. 18, 3755 (2016).

    CAS  Google Scholar 

  103. 103.

    W.E. Kaden, S. Pomp, M. Sterrer, and H.J. Freund: Insights into silica bilayer hydroxylation and dissolution. Top. Catal. 60, 471 (2017).

    CAS  Google Scholar 

  104. 104.

    L.T. Zhuravlev: The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf., A 173, 1 (2000).

    CAS  Google Scholar 

  105. 105.

    B.R. Bickmore, J.C. Wheeler, B. Bates, K.L. Nagy, and D.L. Eggett: Reaction pathways for quartz dissolution determined by statistical and graphical analysis of macroscopic experimental data. Geochim. Cosmochim. Acta 72, 4521 (2008).

    CAS  Google Scholar 

  106. 106.

    F. Ringleb, M. Sterrer, and H-J. Freund: Preparation of Pd—MgO model catalysts by deposition of Pd from aqueous precursor solutions onto Ag(001)-supported MgO(001) thin films. Appl. Catal., A 474, 186 (2014).

    CAS  Google Scholar 

  107. 107.

    D.A. Vermilyea: Dissolution of MgO and Mg(OH)2 in aqueous solutions. J. Electrochem. Soc. 116, 1179 (1969).

    Google Scholar 

  108. 108.

    O.S. Pokrovsky and J. Schott: Experimental study of brucite dissolution and precipitation in aqueous solutions: Surface speciation and chemical affinity control. Geochim. Cosmochim. Acta 68, 31 (2004).

    CAS  Google Scholar 

  109. 109.

    H.F. Wang, H. Ariga, R. Dowler, M. Sterrer, and H.J. Freund: Surface science approach to catalyst preparation—Pd deposition onto thin Fe3O4(111) films from PdCl2 precursor. J. Catal. 286, 1 (2012).

    CAS  Google Scholar 

  110. 110.

    H.F. Wang, W.E. Kaden, R. Dowler, M. Sterrer, and H.J. Freund: Model oxide-supported metal catalysts—Comparison of ultrahigh vacuum and solution based preparation of Pd nanoparticles on a single-crystalline oxide substrate. Phys. Chem. Chem. Phys. 14, 11525 (2012).

    CAS  Google Scholar 

  111. 111.

    K.M. Burson, L. Gura, B. Kell, C. Büchner, A.L. Lewandowski, M. Heyde, and H-J. Freund: Resolving amorphous solid-liquid interfaces by atomic force microscopy. Appl. Phys. Lett. 108, 201602 (2016).

    Google Scholar 

  112. 112.

    F.F. Abraham and I.P. Batra: Theoretical interpretation of atomic-force- microscope images of graphite. Surf. Sci. 209, L125 (1989).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Martin Sterrer or Hans-Joachim Freund.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sterrer, M., Nilius, N., Shaikhutdinov, S. et al. Interaction of water with oxide thin film model systems. Journal of Materials Research 34, 360–378 (2019). https://doi.org/10.1557/jmr.2018.454

Download citation