Development of multilayered biomimetic bone plates: In vitro release assessment


In this study, Sr-incorporated nano-assembled hydroxyapatite structures (HASr) on 316L stainless steel bone plates were prepared by a biomimetic method induced by 10× simulated body fluid (SBF). First, HASr was coated on bone plates by the interaction of ions with 10× SBF containing different concentration of strontium ions. Then, silver coating is achieved as a second layer on bone plates. The cumulative release of strontium ions (Sr2+) and silver ions (Ag+) from multilayered HASr-Ag bone plates at the end of 15 days was in the range of 0.016–0.085 mM and 0.064–0.135 mM, respectively. The release mechanism for the bone plates was evaluated by several mathematical models that best fit the release data. The results showed that Sr2+ and Ag+ are released from multilayered bone plates by diffusion, whereas the release of Ag+ is not occurred by diffusion, instead the mechanism is dissolution, when silver is coated alone on bone plates.

This is a preview of subscription content, access via your institution.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:


  1. 1.

    T. Hanawa: Overview of metals and applications. In Metals for Biomedical Devices (Woodhead Publishing, Oxford, 2010); pp. 3–24.

    Google Scholar 

  2. 2.

    F. Bir, H. Khireddine, A. Touati, D. Sidane, S. Yala, and H. Oudadesse: Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates. Appl. Surf. Sci. 258, 7021 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    A. Ganser, R.E. Thompson, I. Tami, D. Neuhoff, A. Steiner, and K. Ito: An in vivo experimental comparison of stainless steel and titanium Schanz screws for external fixation. Eur. J. Trauma Emerg. Surg. 59, 33 (2007).

    Google Scholar 

  4. 4.

    E.G. Nordström and O.L.S. Muñoz: Physics of bone bonding mechanism of different surface bioactive ceramic materials in vitro and in vivo. Biomed. Mater. Eng. 11, 221 (2001).

    Google Scholar 

  5. 5.

    W. Xia, C. Lindahl, J. Lausma, P. Borchardt, A. Ballo, P. Thomsen, and H. Engqvist: Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces. Acta Biomater. 6, 1591 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    T.N. Pham, T.M.T. Dinh, T.T. Nguyen, T.P. Nguyen, E. Kergourlay, D. Grossin, G. Bertrand, N. Pebere, S.J. Marcelin, C. Charvillat, and C. Drouet: Operating parameters effect on physicochemical characteristics of nanocrystalline apatite coatings electrodeposited on 316L stainless steel. Adv. Nat. Sci.: Nanosci. Nanotechnol. 8, 035001 (2017).

    Google Scholar 

  7. 7.

    F-H. Lina, Y-S. Hsub, S-H. Linb, and J-S. Sun: The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel. Biomaterials 23, 4029 (2002).

    Article  Google Scholar 

  8. 8.

    N.R. Babu, S. Manwatkar, K.P. Rao, and T.S.S. Kumar: Bioactive coatings on 316L stainless steel implants. Trends Biomater. Artif. Organs 17, 43 (2004).

    Google Scholar 

  9. 9.

    A. Valanezahad, K. Ishikawa, K. Tsuru, M. Maruta, and S. Matsuya: Hydrothermal calcium modification of 316L stainless steel and its apatite forming ability in simulated body fluid. Dent. Mater. J. 749, 30 (2011).

    Google Scholar 

  10. 10.

    H. Mehboob, M. Awais, H. Khalid, A.A. Ch, S.A. Siddiqi, and I. Rehman: Polymer-assisted deposition of hydroxyapatite coatings using electrophoretic technique. Biomed. Eng. 26, 1450073 (2014).

    CAS  Google Scholar 

  11. 11.

    T. Kokubo and H. Takadama: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    A. Oyane, H.M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura: Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. 65, 188 (2003).

    Article  CAS  Google Scholar 

  13. 13.

    B. Maviş, T.T. Demirtaş, M. Gümüşderelioğlu, G. Gündüz, and Ü. Çolak: Synthesis, characterization and osteoblastic activity of PCL nanofibers coated with biomimetic calcium phosphate. Acta Biomater. 5, 3098 (2009).

    Article  CAS  Google Scholar 

  14. 14.

    C. Wu, J. Chang, W. Zhai, and S. Ni: A novel bioactive porous bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering. J. Mater. Sci.: Mater. Med. 18, 857 (2007).

    CAS  Google Scholar 

  15. 15.

    T.T. Demirtaş, G. Kaynak, and M. Gümüşderelioğlu: Bone-like hydroxyapatite precipitated from 10× SBF-like solution by microwave irradiation. Mater. Sci. Eng., C 49, 713 (2015).

    Article  CAS  Google Scholar 

  16. 16.

    E.Ö. Tunçay, T.T. Demirtaş, and M. Gümüşderelioğlu: Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds. J. Trace Elem. Med. Biol. 40, 72 (2017).

    Article  CAS  Google Scholar 

  17. 17.

    S.G. Dahl, P. Allain, P.J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P.D. Delmas, and C. Christiansen: Incorporation and distribution of strontium in bone. Bone 28, 446 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    P.J. Marie: Optimizing bone metabolism in osteoporosis: Insight into the pharmacologic profile of strontium ranelate. Osteoporosis Int. 14, 9 (2003).

    Article  CAS  Google Scholar 

  19. 19.

    I. Pereiro, C. Rodriguez-Valencia, C. Serra, E.L. Solla, J. Serra, and P. Gonzalez: Pulsed laser deposition of strontium-substituted hydroxyapatite coatings. Appl. Surf. Sci. 258, 9192 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    A.R. Boyd, L. Rutledge, L.D. Randolph, and B.J. Meenana: Strontium-substituted hydroxyapatite coatings deposited via a co-deposition sputter technique. Mater. Sci. Eng., C 46, 290 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    C.T. Wong, W.W. Lu, W.K. Chan, K.M. Cheung, K.D. Luk, D.S. Lu, A.B. Rabie, L.F. Deng, and J.C. Leong: In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (Sr-HA) bioactive cement. J. Biomed. Mater. Res. 68A, 513 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    G.X. Ni, W.W. Lu, K.Y. Chiu, Z.Y. Li, D.Y. Fong, and K.D. Luk: Strontium-containing hydroxyapatite (Sr-HA) bioactive cement for primary hip replacement: An in vivo study. J. Biomed. Mater. Res., Part B 77, 409 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    W. Xia, C. Lindahl, J. Lausmaa, P. Borchardt, A. Ballo, P. Thomsen, and H. Engqvist: Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces. Acta Biomater. 6, 1591 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    W. Xue, H.L. Hosick, A. Bandyopadhyay, S. Bose, C. Ding, K.D.K. Luk, K.M.C. Cheung, and W.W. Lu: Preparation and cell-materials interactions of plasma sprayed strontium-containing hydroxyapatite coating. Surf. Coat. Technol. 201, 4685 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    C.E. Albers, W. Hofstetter, K.A. Siebenrock, R. Landmann, and F.M. Klenke: In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology 7, 30 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    A. Melaiye and W.J. Youngs: Silver and its application as an antimicrobial agent. Expert Opin. Ther. Pat. 15, 125 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    C.S. Ciobanu, F. Massuyeau, L.V. Constantin, and D. Predoi: Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100 °C. Nanoscale Res. Lett. 613, 1 (2011).

    Google Scholar 

  28. 28.

    Q.L. Feng, T.N. Kim, J. Wu, E.S. Park, J.O. Kim, D.Y. Lim, and F.Z. Cui: Antibacterial effects of Ag-HAp thin films on alumina substrates. Thin Solid Films 335, 214 (1998).

    Article  Google Scholar 

  29. 29.

    W. Chen, Y. Liu, H.S. Courtney, M. Bettenga, C.M. Agrawal, J.D. Bumgardner, and J.L. Ong: In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27, 5512 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    M. Mirzaee, M. Vaezi, and Y. Palizdar: Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid. Mater. Sci. Eng., C 69, 675 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    G.A. Fielding, M. Roy, A. Bandyopadhyay, and S. Bose: Antibacterial and biological characteristics of plasma sprayed silver and strontium doped hydroxyapatite coatings. Acta Biomater. 8, 3144 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Y. Huang, X. Zhang, H. Zhang, H. Qiao, X. Zhang, T. Jia, S. Han, Y. Gao, H. Xiao, and H. Yang: Fabrication of silver- and strontium-doped hydroxyapatite/TiO2 nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity. Ceram. Int. 43, 992 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Z. Geng, R. Wang, X. Zhuo, Z. Li, Y. Huang, and L. Ma: Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. Mater. Sci. Eng., C 71, 852 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    D.B. Hazer, M. Sakar, Y. Dere, G. Altinkanat, M.I. Ziyal, and B. Hazer: Antimicrobial effect of polymer-based silver nanoparticle coated pedicle screws—experimental research on biofilm inhibition in rabbits. Spine 41, 323 (2016).

    Article  Google Scholar 

  35. 35.

    T.P. Hadjiioannou, G.D. Christian, M.A. Koupparis, and P.E. Macheras: Quantitative Calculations in Pharmaceutical Practice and Research (VCH Publishers, New York, New York, 1993).

    Google Scholar 

  36. 36.

    D.W.A. Bourne: Pharmacokinetics. In Modern Pharmaceutics (Marcel Dekker, New York, New York, 2002); pp. 67–93.

    Google Scholar 

  37. 37.

    T. Higuchi: Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 52, 1145 (1963).

    CAS  Article  Google Scholar 

  38. 38.

    A.W. Hixson and J.H. Crowell: Dependence of reaction velocity upon surface and agitation. Ind. Eng. Chem. 23, 923 (1931).

    CAS  Article  Google Scholar 

  39. 39.

    D.S. Tavares, C.X. Resende, M.P. Quitan, L.O. Castro, J.M. Granjeiro, and G.A. Soares: Incorporation of strontium up to 5 mol. (%) to hydroxyapatite did not affect its cytocompatibility. Mater. Res. 14, 456 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    G.S. Mandair and M.D. Morris: Contributions of Raman spectroscopy to the understanding of bone strength. BoneKEy Rep. 4, 620 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    M. Quade, M. Schumacher, A. Bernhardt, A. Lode, M. Kampschulte, A. Voß, P. Simon, O. Uckermann, M. Kirsche, and M. Gelinsky: Strontium-modification of porous scaffolds from mineralized collagen for potential use in bone defect therapy. Mater. Sci. Eng., C 84, 159 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    A. Bigi, E. Boanini, C. Capuccini, and M. Gazzano: Strontium-substituted hydroxyapatite nanocrystals. Inorg. Chim. Acta 360, 1009 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    M.D. O’Donnell, Y. Fredholm, A. de Rouffignac, and R.G. Hill: Structural analysis of a series of strontium-substituted apatites. Acta Biomater. 4, 1455 (2008).

    Article  CAS  Google Scholar 

  44. 44.

    T.S.B. Narasaraju and D.E. Phebe: Some physico-chemical aspects of hydroxylapatite. J. Mater. Sci. 33, 1 (1996).

    Article  Google Scholar 

  45. 45.

    E. Canalis, M. Hott, P. Deloffre, Y. Tsouderos, and P.J. Marie: The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 18, 517 (1996).

    CAS  Article  Google Scholar 

  46. 46.

    C. Chang, C. Tu, T.H. Chen, L. Komuves, Y. Oda, S.A. Pratt, S. Miller, and D. Shoback: Expression and signal transduction of calcium-sensing receptors in cartilage and bone. Endocrinology 140, 5883 (1999).

    CAS  Article  Google Scholar 

  47. 47.

    A. Barbara, P. Delannoy, B. Denis, and P. Marie: Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism 53, 532 (2004).

    CAS  Article  Google Scholar 

  48. 48.

    J. Braux, F. Velard, C. Guillaume, S. Bouthors, E. Jallot, J-M. Nedelec, D. Laurent-Maquin, and P. Laquerrière: A new insight into the dissociating effect of strontium on bone resorption and formation. Acta Biomater. 7, 2593 (2011).

    CAS  Article  Google Scholar 

  49. 49.

    M. Schumacher, A. Lode, A. Helth, and M. Gelinsky: A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro. Acta Biomater. 9, 9547 (2013).

    CAS  Article  Google Scholar 

  50. 50.

    C. O’Sullivan, P. O’Hare, N.D. O’Leary, A.M. Crean, K. Ryan, A.D.W. Dobson, and L. O’Neill: Deposition of substituted apatites with anticolonizing properties onto titanium surfaces using a novel blasting process. J. Biomed. Mater. Res., Part B 95B, 141 (2010).

    Article  CAS  Google Scholar 

  51. 51.

    F. Yang, D. Yang, J. Tu, Q. Zheng, L. Cai, and L. Wang: Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29, 981 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    O. Gordon, T.V. Slenters, P.S. Brunetto, A.E. Villaruz, D.E. Sturdevant, and M. Otto: Silver coordination polymers for prevention of implant infection: Thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob. Agents Chemother. 54, 4208 (2010).

    CAS  Article  Google Scholar 

  53. 53.

    G. Gosheger, J. Hardes, H. Ahrens, A. Streitburger, H. Buerger, and M. Erren: Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials 25, 5547 (2004).

    CAS  Article  Google Scholar 

  54. 54.

    D. Langanki, M.E. Ogle, J.D. Cameron, R.A. Lirtzman, R.E. Schroeder, and M.W. Mirsch: Evaluation of a novel bioprosthetic heart valve incorporating anticalcification and antimicrobial technology in a sheep model. J. Heart Valve Dis. 7, 633 (1998).

    CAS  Google Scholar 

Download references


This study was financially supported by Bülent Ecevit University Scientific Research Projects, Project No. 2015-3997 1044-02.

Author information



Corresponding author

Correspondence to R. Seda Tığlı Aydın.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tığlı Aydın, R.S., Uyanık, S. Development of multilayered biomimetic bone plates: In vitro release assessment. Journal of Materials Research 34, 1879–1891 (2019).

Download citation