High-performance antistatic acrylic coating by incorporation with modified graphene

Abstract

Graphene (G) has attracted great interest because of its excellent chemical and electrical properties. However, the aggregation of graphene restricts its application. Herein, linoleic acid sodium salt (LASS), a low-cost and environmentally friendly material, was used to improve the dispersion of graphene through covalent interaction. Then, the mixture (G@LASS) was integrated with acrylic resin matrix via hydrogen bond between the carboxyl and ester groups. The excellent interfacial compatibility between G@LASS and acrylic matrix, as well as good dispersibility of G@LASS, was demonstrated by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman, and scanning electron microscopy tests. Compared with acrylic matrix, the surface hydrophobicity of G@LASS@Acrylic increased considerably because of its compact structure. G@LASS@Acrylic composites meet the requirement of antistatic materials when the content of G was only about 0.5 wt%. The results showed that conductive pathways were established successfully through this method.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. 1.

    K. Du, W. Han, L. Zhen, and Z.Q. Wang: The experiment on aging resistance of antiaging coating for slope protection sandbags. J. Yangtze River Sci. Res. Inst. 28, 58 (2011).

    Google Scholar 

  2. 2.

    M. Bethencourt, F.J. Botana, M.J. Cano, R.M. Osuna, and M. Marcos: Lifetime prediction of waterborne acrylic paints with the AC—DC—AC method. Prog. Org. Coat. 49, 275 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    I. Gonzalez, D. Mestach, J.R. Leiza, and J.M. Asua: Adhesion enhancement in waterborne acrylic latex binders synthesized with phosphate methacrylate monomers. Prog. Org. Coat. 61, 38 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    J.H. Li, M. Li, H.F. Da, Q. Liu, and M.H. Liu: Preparation of Nylon-6/flake graphite derivatives composites with antistatic property and thermal stability. Composites, Part A 43, 1038 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    N.A. Aal, F. El-Tantawy, A. Al-Hajry, and M. Bououdina: New antistatic charge and electromagnetic shielding effectiveness from conductive epoxy resin/plasticized carbon black composites. Polym. Compos. 29, 125 (2010).

    Article  Google Scholar 

  6. 6.

    W.H. Tang, B.B. Liu, Z.W. Liu, J. Tang, and H.L. Yuan: Processing-dependent high impact polystyrene/styrene-butadiene-styrene tri-block copolymer/carbon black antistatic composites. J. Appl. Polym. Sci. 123, 1032 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    M. Sangermano, S. Pegel, P. Pötschke, and B. Voit: Antistatic epoxy coatings with carbon nanotubes obtained by cationic photopolymerization. Macromol. Rapid Commun. 29, 396 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    C.S. Li, T.X. Liang, W.Z. Lu, C.H. Tang, X.Q. Hu, M.S. Cao, and J. Liang: Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Compos. Sci. Technol. 64, 2089 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    K.D. Li, C. Zhang, Z.J. Du, H.Q. Li, and W. Zou: Preparation of humidity-responsive antistatic carbon nanotube/PEI nanocomposites. Synth. Met. 162, 2010 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Wang, M.M. Liu, Y.Q. Liu, J.Q. Luo, X.Y. Lu, and J. Sun: A novel mica-titania@graphene core—shell structured antistatic composite pearlescent pigment. Dyes Pigm. 136, 197 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    H. Wang, G.Y. Xie, M.H. Fang, Z. Ying, Y. Tong, and Y. Zeng: Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene. Composites, Part B 79, 444 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    C.R. Martins and M.A.D. Paoli: Antistatic thermoplastic blend of polyaniline and polystyrene prepared in a double-screw extruder. Eur. Polym. J. 41, 2867 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    J.G. Wang, C. Zhang, Z.J. Du, H.Q. Li, and W. Zou: Functionalization of MWCNTs with silver nanoparticles decorated polypyrrole and their application in antistatic and thermal conductive epoxy matrix nanocomposite. RSC Adv. 6, 31782 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    C.G. Lee, X.D. Wei, J.W. Kysar, and J. Honel: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    B.H. Yuan, C.L. Bao, X.D. Qian, S.H. Jiang, P.Y. Wen, W.Y. Xing, L. Song, K.M. Liew, and Y. Hu: Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind. Eng. Chem. Res. 53, 1143 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    C. Wu, X.Y. Huang, G.L. Wang, L.B. Lv, G. Chen, G.Y. Li, and P.K. Jiang: Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv. Funct. Mater. 23, 506 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    M.J. Allen, V.C. Tung, and R.B. Kaner: Honeycomb carbon: A review of graphene. Chem. Rev. 110, 132 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    L.M. Viculis, J.J. Mack, and R.B. Kaner: A chemical route to carbon nanoscrolls. Science 299, 1361 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    X.Q. Liu, J.M. Zhang, R. Yan, Q.Y. Zhang, and X.H. Liu: Preparation of graphene nanoplatelet—titanate nanotube composite and its advantages over the two single components as biosensor immobilization materials. Biosens. Bioelectron. 51, 76 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    A.K. Das, S. Maiti, and B.B. Khatua: High performance electrode material prepared through in situ, polymerization of aniline in the presence of zinc acetate and graphene nanoplatelets for supercapacitor application. J. Electroanal. Chem. 739, 10 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    N. Larouche and B.L. Stansfield: Classifying nanostructured carbons using graphitic indices derived from Raman spectra. Carbon 48, 620 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    S.R. Li, S.C. Liu, Z.W. Fu, Q.Y. Li, C.F. Wu, and W.H. Guo: Surface modification and characterization of carbon black by sodium lignosulphonate. Surf. Interface Anal. 49, 197 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    M.L. Mao, L. Jiang, L.C. Wu, M. Zhang, and T.H. Wang: The structure control of ZnS/graphene composites and their excellent properties for lithium-ion battery. J. Mater. Chem. A 3, 13384 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    S. Ryu, Y.H. Lee, J.W. Hwang, S. Hong, C. Kim, T.G. Park, H. Lee, and S.H. Hong: High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer. Adv. Mater. 23, 1971 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    S. Ryu, J.B. Chou, K. Lee, D.J. Lee, S.H. Hong, R. Zhao, H. Lee, and S.G. Kim: Direct insulation-to-conduction transformation of adhesive catecholamine for simultaneous increases of electrical conductivity and mechanical strength of CNT fibers. Adv. Mater. 27, 3250 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    L. Valentini, S.B. Bon, M.A. Lopez-Manchado, R. Verdejo, L. Pappalardo, A. Bolognini, A. Alvino, S. Borsini, A. Berardo, and N.M. Pugno: Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites. Compos. Sci. Technol. 128, 123 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    L.G. Cançado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, and A.C. Ferrari: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190 (2011).

    Article  Google Scholar 

  28. 28.

    X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Su, J.H. Du, D.M. Sun, C. Liu, and H.M. Cheng: Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors. Nano Res. 6, 842 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    E. Messina, N. Leone, A. Foti, G.D. Marco, C. Riccucci, G.D. Carlo, F.D. Maggio, A. Cassata, L. Gargano, C. D’Andrea, B. Fazio, O.M. Maragò, B. Robba, C. Vasi, G.M. Ingo, and P.G. Gucciardi: Double-wall nanotubes and graphene nanoplatelets for hybrid conductive adhesives with enhanced thermal and electrical conductivity. ACS Appl. Mater. Interfaces 8, 23244 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    F. Marra, A.G. D’Aloia, A. Tamburrano, I.M. Ochando, G. Debellis, G.J. Ellis, and M.S. Sarto: Electromagnetic and dynamic mechanical properties of epoxy and vinylester-based composites filled with graphene nanoplatelets. Polymer 8, 272 (2016).

    Article  Google Scholar 

  32. 32.

    Y.M. Shulga, S.A. Baskakov, V.V. Abalyaeva, O.N. Efimov, N.Y. Shulga, A. Michtchenko, L. Lartundo-Rojas, L.A. Moreno-R, J.G. Cabañas-Moreno, and V.N. Vasilets: Composite material for supercapacitors formed by polymerization of aniline in the presence of graphene oxide nanosheets. J. Power Sources 224, 195 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Y.F. Li, J.H. Zhu, S.Y. Wei, J. Ryu, L.Y. Sun, and Z.H. Guo: Poly(propylene)/graphene nanoplatelet nanocomposites: Melt rheological behavior and thermal, electrical, and electronic properties. Macromol. Chem. Phys. 212, 1951 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    S.X. Da, J. Wang, H.Z. Geng, S.L. Jia, C.X. Xu, L.G. Li, P.P. Shi, and G.F. Li: High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes. Appl. Surf. Sci. 392, 1117 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    S.M. Yu, F. Qin, and G.C. Wang: Improving dielectric properties of poly(vinylidene fluoride) composites induced by poly(vinyl pyrrolidone)-encapsulated polyaniline nanorods. J. Mater. Chem. C 4, 1504 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q.Q. Lei: Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv. Mater. 19, 852 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the Science and Technology Program of Suqian, Jiangsu Province (H201709).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Weihong Guo.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yao, W., Wang, Y. et al. High-performance antistatic acrylic coating by incorporation with modified graphene. Journal of Materials Research 34, 510–518 (2019). https://doi.org/10.1557/jmr.2018.436

Download citation