Microstructures and mechanical properties of Ti/Al/Mg/Al/Ti laminates with various rolling reductions

Abstract

Ti/Al/Mg/Al/Ti laminates were fabricated by hot rolling at 450 °C with various rolling reductions, and the relationship between the mechanical properties and microstructures was investigated in detail. Both Al–Mg and Ti–Al interfaces are well bonded without pore, crack, and intermetallics. Mg layer of 50% rolling reduction has the most dynamic recrystallized (DRXed) grains around the deformation bands, and tensile twins appear in Mg layer when the rolling reduction increases to 60%. Large numbers of twins are formed to absorb the further strain as reduction increases. Ti layer shows equiaxed grains, which are not sensitive to thickness strain. Mg layers of laminates with various rolling reductions all exhibit typical (0002) basal texture. Fifty-percent rolling reduction has the largest ultimate tensile strength of 337.8 MPa, which is mainly owing to grain refinement caused by the extensive DRX. The differences of elongation among the three samples with different rolling reductions are small.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    M. Janeček, R. Král, P. Dobroň, F. Chmelík, V. Šupík, and F. Holländer: Mechanisms of plastic deformation in AZ31 magnesium alloy investigated by acoustic emission and transmission electron microscopy. Mater. Sci. Eng., A 462, 311–315 (2007).

    Article  Google Scholar 

  2. 2.

    P.D. Motevalli and B. Eghbali: Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding. Mater. Sci. Eng., A 628, 135–142 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    X. Zhang, S. Castagne, T. Yang, C. Gu, and J. Wang: Entrance analysis of 7075 Al/Mg–Gd–Y–Zr/7075 Al laminated composite prepared by hot rolling and its mechanical properties. Mater. Des. 32, 1152–1158 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    I.J. Polmear: Magnesium alloys and applications. Met. Sci. J. 10, 1–16 (1994).

    CAS  Google Scholar 

  5. 5.

    M. Niinomi: Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng., A 243, 231–236 (1998).

    Article  Google Scholar 

  6. 6.

    R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook: Titanium Alloys (ASM International, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 1994); p. 231, 513.

    Google Scholar 

  7. 7.

    X. Zhang, T. Yang, S. Castagne, and J. Wang: Microstructure; bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot rolling. Mater. Sci. Eng., A 528, 1954–1960 (2011).

    Article  Google Scholar 

  8. 8.

    F. Kavarana, K. Ravichandran, and S. Sahay: Nanoscale steel-brass multilayer laminates made by cold rolling: Microstructure and tensile properties. Scr. Mater. 42, 947–954 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    J-G. Luo and V.L. Acoff: Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils. Mater. Sci. Eng., A 379, 164–172 (2004).

    Article  Google Scholar 

  10. 10.

    I. Bataev, A. Bataev, V. Mali, and D. Pavliukova: Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing. Mater. Des. 35, 225–234 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    B. Zhu, W. Liang, and X. Li: Interfacial microstructure, bonding strength and fracture of magnesium–aluminum laminated composite plates fabricated by direct hot pressing. Mater. Sci. Eng., A 528, 6584–6588 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    F. Cole: Method of diffusion bonding. Google Patents, US3789498A [P], 1974-2-5.

  13. 13.

    Y. Guo, G. Liu, H. Jin, Z. Shi, and G. Qiao: Intermetallic phase formation in diffusion-bonded Cu/Al laminates. J. Mater. Sci. 46, 2467–2473 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    D. Yang, P. Cizek, P. Hodgson, and C. Wen: Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scr. Mater. 62, 321–324 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    J. Zhao, W. Wang, Q. Liu, Z. Wang, and P. Shi: A two-stage scheduling method for hot rolling and its application. Contr. Eng. Pract. 17, 629–641 (2009).

    Article  Google Scholar 

  16. 16.

    M. Ma, X. Meng, and W.C. Liu: Microstructure and mechanical properties of Ti/Al/Ti laminated composites prepared by hot rolling. J. Mater. Eng. Perform. 26, 3569–3578 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    L.L. Chang, E.F. Shang, Y.N. Wang, X. Zhao, and M. Qi: Texture and microstructure evolution in cold rolled AZ31 magnesium alloy. Mater. Charact. 60, 487–491 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    X.P. Zhang, T.H. Yang, S. Castagne, and J.T. Wang: Microstructure; bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot rolling. Mater. Sci. Eng., A 528, 1954–1960 (2011).

    Article  Google Scholar 

  19. 19.

    J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew: The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater. 55, 2101–2112 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    S. Agnew: Plastic anisotropy of magnesium alloy AZ31B sheet. In Magnesium Technology (TMS, Seattle, 2002); pp. 169–174.

    Google Scholar 

  21. 21.

    T. Christy, N. Murugan, and S. Kumar: A comparative study on the microstructures and mechanical properties of Al 6061 alloy and the MMC Al 6061/TiB2/12p. J. Miner. Mater. Charact. Eng. 9, 57 (2010).

    Google Scholar 

  22. 22.

    S. Xu, N. Matsumoto, S. Kamado, T. Honma, and Y. Kojima: Effect of Mg17Al12 precipitates on the microstructural changes and mechanical properties of hot compressed AZ91 magnesium alloy. Mater. Sci. Eng., A 523, 47–52 (2009).

    Article  Google Scholar 

  23. 23.

    S. Scudino, G. Liu, M. Sakaliyska, K. Surreddi, and J. Eckert: Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties. Acta Mater. 57, 4529–4538 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Z. Chen, D. Wang, X. Cao, W. Yang, and W. Wang: Influence of multi-pass rolling and subsequent annealing on the interface microstructure and mechanical properties of the explosive welding Mg/Al composite plates. Mater. Sci. Eng., A 723, 97–108 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    S. Roman’kov, Z.B. Sagdoldina, S. Kaloshkin, and E. Kaevitser: Fabrication of Ti–Al composite coatings by the mechanical alloying method. Phys. Met. Metallogr. 106, 67–75 (2008).

    Article  Google Scholar 

  26. 26.

    Y. Du, G. Fan, T. Yu, N. Hansen, L. Geng, and X. Huang: Laminated Ti–Al composites: Processing, structure and strength. Mater. Sci. Eng., A 673, 572–580 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    C.Z. Luo, W. Liang, X.R. Li, and Y.J. Yao: Study on interface characteristics of Al/Mg/Al composite plates fabricated by two-pass hot rolling. Mater. Sci. Forum 748, 346–351 (2013).

    Article  Google Scholar 

  28. 28.

    J-S. Kim, K.S. Lee, Y.N. Kwon, B-J. Lee, Y.W. Chang, and S. Lee: Improvement of interfacial bonding strength in roll-bonded Mg/Al clad sheets through annealing and secondary rolling process. Mater. Sci. Eng., A 628, 1–10 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    R. Jafari, B. Eghbali, and M. Adhami: Influence of annealing on the microstructure and mechanical properties of Ti/Al and Ti/Al/Nb laminated composites. Mater. Chem. Phys. 213, 313–323 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    M.T. Pérez-Prado and O. Ruano: Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding. Scr. Mater. 51, 1093–1097 (2004).

    Article  Google Scholar 

  31. 31.

    C. Liu, Q. Wang, Y. Jia, R. Jing, B. Zhang, M. Ma, and R. Liu: Microstructures and mechanical properties of Mg/Mg and Mg/Al/Mg laminated composites prepared via warm roll bonding. Mater. Sci. Eng., A 556, 1–8 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    M.H. Yoo: Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Trans. A 12, 409–418 (1981).

    CAS  Article  Google Scholar 

  33. 33.

    S.Q. Zhu and S.P. Ringer: On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys. Acta Mater. 144, 365–375 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    J.C. Tan and M.J. Tan: Dynamic continuous recrystallization characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet. Mater. Sci. Eng., A 339, 124–132 (2003).

    Article  Google Scholar 

  35. 35.

    Z.Y. Liu, T.T. Huang, W.J. Liu, and S. Kang: Dislocation mechanism for dynamic recrystallization in twin-roll casting Mg–5.51Zn–0.49Zr magnesium alloy during hot compression at different strain rates. Trans. Nonferrous Met. Soc. China 26, 378–389 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    D. Guan, W.M. Rainforth, J. Gao, J. Sharp, B.P. Wynne, and L. Ma: Individual effect of recrystallisation nucleation sites on texture weakening in a magnesium alloy: Part 1-double twins. Acta Mater. 135, 14–24 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    H. Yu, C. Lu, A.K. Tieu, H. Li, A. Godbole, and C. Kong: Annealing effect on microstructure and mechanical properties of Al/Ti/Al laminate sheets. Mater. Sci. Eng., A 660, 195–204 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    M. Ma, P. Huo, W. Liu, G. Wang, and D. Wang: Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding. Mater. Sci. Eng., A 636, 301–310 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    H.S. Kim, H.T. Jeong, H.G. Jeong, and W.J. Kim: Grain refinement and texture evolution in AZ31 alloy during ECAP process and their effects on mechanical properties. Mater. Sci. Forum 475–479, 549–554 (2005).

    Article  Google Scholar 

  40. 40.

    M. Paramsothy, S. Hassan, N. Srikanth, and M. Gupta: Enhancing the performance of magnesium alloy AZ31 by integration with millimeter length scale aluminium-based cores. J. Compos. Mater. 44, 1099–1117 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    A. Azizi and H. Alimardan: Effect of welding temperature and duration on properties of 7075 Al to AZ31B Mg diffusion bonded joint. Trans. Nonferrous Met. Soc. China 26, 85–92 (2016).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the National Natural Science Foundation of China under Grant No. 51274149; Shanxi Scholarship Council of China (No. 2014-029); the Youth Science Foundation of Shanxi Province under Grant No. 2008021033; the Fund for the Doctoral Program of Higher Education of China under Grant No. 20111402110004; and the Program of Shanxi Institute of Energy under Grant No. ZY-2017003.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Liang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Nie, H., Mi, Y. et al. Microstructures and mechanical properties of Ti/Al/Mg/Al/Ti laminates with various rolling reductions. Journal of Materials Research 34, 344–353 (2019). https://doi.org/10.1557/jmr.2018.428

Download citation