Thermochemistry of volatile metal hydroxides and oxyhydroxides at elevated temperatures


A principal mode of corrosion in combustion or fuel cell environments is the formation of volatile hydroxides and oxyhydroxides from metal or oxide surfaces at high temperatures. It is important to determine the degree of volatility and accurate thermodynamic properties for these hydroxides. Significant gaseous metal hydroxides/oxyhydroxides are discussed, along with available experimental and theoretical methods of characterizing species and determining their thermodynamic properties.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11


  1. 1.

    O. Glemser and H.G. Wendlandt: Gaseous hydroxides. In Advances in Inorganic Chemistry and Radiochemistry, Vol. 5, H.J. Emeléus and A.G. Sharpe, eds., pp. 215–258 (Academic Press, New York, 1963).

    Google Scholar 

  2. 2.

    J.W. Hastie: High Temperature Vapors Science and Technology (Academic Press, New York, 1975); pp. 60–87.

    Google Scholar 

  3. 3.

    P.J. Meschter, E.J. Opila, and N.S. Jacobson: Water vapor mediated volatilization of high temperature materials. In Annual Reviews of Materials Research, D.M. Lipkin, ed. (Annual Reviews, Inc., Palo Alto, 2013).

    Google Scholar 

  4. 4.

    N.S. Jacobson: High-temperature durability considerations for HSCT combustor. NASA TP-3162 (1992).

  5. 5.

    I. Glassman: Combustion, 2nd ed. (Academic Press, Inc., Orlando, 1987).

    Google Scholar 

  6. 6.

    E.J. Opila and D.L. Myers: Alumina volatility in water vapor at elevated temperatures. J. Am. Ceram. Soc. 87, 1701–1705 (2004).

    CAS  Google Scholar 

  7. 7.

    E.J. Opila and D.L. Myers: Alumina volatility in water vapor at elevated temperatures: Application to combustion environments. In High Temperature Corrosion and Materials Chemistry IV, E. Opila, P. Hou, T. Maruyama, B. Pieraggi, D. Shifler, and E. Wuchina, eds. (The Electrochemical Society, Inc., Pennington, New Jersey, 2003); pp. 535–544.

    Google Scholar 

  8. 8.

    J.W. Fergus: Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells. Int. J. Hydrogen Energy 32, 3664–3671 (2007).

    CAS  Google Scholar 

  9. 9.

    D.J. Young and B.A. Pint: Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor. Oxid. Met. 66, 137–153 (2006).

    CAS  Google Scholar 

  10. 10.

    A. Kantrowitz and J. Grey: A high intensity source for the molecular beam. I. Theoretical. Rev. Sci. Instrum. 21, 328 (1951).

    Google Scholar 

  11. 11.

    T.A. Milne and F.T. Greene: Direct mass spectrometric sampling of high pressure systems. In Mass Spectrometry in Inorganic Chemistry, J.L. Margrave, ed. (ACS, Washington DC, 1968); ch. 5, pp. 68–82.

    Google Scholar 

  12. 12.

    C.A. Stearns, F.J. Kohl, G.C. Fryburg, and R.A. Miller: A High Pressure Modulated Molecular Beam Mass Spectrometric Sampling System: NASA Technical Memorandum 73720 (National Aeronautics and Space Administration, Washington, DC, 1977).

    Google Scholar 

  13. 13.

    E.J. Opila, D.S. Fox, and N.S. Jacobson: Mass spectrometric identification of Si—O–H(g) species from the reaction of silica with water vapor at atmospheric pressure. J. Am. Ceram. Soc. 80, 1009–1012 (1997).

    CAS  Google Scholar 

  14. 14.

    D.L. Myers and N.S. Jacobson: Identification of volatile metal hydroxides with free jet expansion mass spectrometry. In Proceedings of International KEMS Workshop, D. Kobertz, N. Jacobson, and D. Sergeev, eds., Calphad Special Issue, in press (Juelich, Germany, 2017).

    Google Scholar 

  15. 15.

    D. Myers, M. Kulis, J. Horvath, N. Jacobson, and D. Fox: Interactions of Ta2O5 with water vapor at elevated temperatures. J. Am. Ceram. Soc. 100, 2353–2357 (2017).

    CAS  Google Scholar 

  16. 16.

    G.C. Fryburg, R.A. Miller, F.J. Kohl, and C.A. Stearns: Volatile products in the corrosion of Cr, Mo, Ti, and four superalloys exposed to O2 containing H2O and gaseous NaCl. J. Electrochem. Soc. 124, 1738–1743 (1977).

    CAS  Google Scholar 

  17. 17.

    J.W. Hastie, K.F. Zmbov, and D.W. Bonnell: Transpiration mass spectrometric analysis of liquid KCl and KOH vaporization. In Modern High Temperature Science, J.L. Margrave, ed. (Humana Press, Totowa, NJ, 1984); pp. 333–364.

    Google Scholar 

  18. 18.

    E.J. Opila, D.L. Myers, N.S. Jacobson, I.M.B. Nielsen, D.F. Johnson, J.K. Olminsky, and M.D. Allendorf: Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g). J. Phys. Chem. A 111, 1971–1980 (2007).

    CAS  Google Scholar 

  19. 19.

    J.M. Bassler and J.L. Margrave: High-temperature applications of infrared spectroscopy. In The Characterization of High Temperature Vapors, J.L. Margrave, ed. (John Wiley & Sons, Inc., New York, 1967); pp. 264–281.

    Google Scholar 

  20. 20.

    W. Weltner, Jr.: The matrix-isolation technique applied to high temperature molecules. In Advances in High Temperature Chemistry, Vol. 2., L. Eyring, ed. (Elsevier, New York, 1969); pp. 85–105.

    CAS  Google Scholar 

  21. 21.

    X. Wang and L. Andrews: Infrared spectroscopic observations of the group 13 metal hydroxides, M(OH)1,2,3 (M = Al, Ga, in, and Tl) and HAl(OH)2. J. Phys. Chem. A 111, 1860–1868 (2007).

    CAS  Google Scholar 

  22. 22.

    X.F. Wang and L. Andrews: Infrared spectra for group 4 dihydroxide and tetrahydroxide molecules. J. Phys. Chem. A 109, 10689–10701 (2005).

    CAS  Google Scholar 

  23. 23.

    L. Shao, L. Zhang, M. Chen, H. Lu, and M. Zhou: Reactions of titanium oxides with water molecules. A matrix isolation FTIR and density functional study. Chem. Phys. Lett. 343, 178–184 (2001).

    CAS  Google Scholar 

  24. 24.

    J.H. Jensen: Molecular Modeling Basics (CRC Press, Boca Raton, 2010).

    Google Scholar 

  25. 25.

    U. Merton and W.E. Bell: The transpiration method. In The Characterization of High Temperature Vapors, J.L. Margrave, ed. (John Wiley & Sons, Inc., New York, 1967); p. 91.

    Google Scholar 

  26. 26.

    G.R. Belton and F.D. Richardson: A volatile iron hydroxide. Trans. Faraday Soc. 58, 1562–1572 (1962).

    CAS  Google Scholar 

  27. 27.

    G.R. Belton and R.L. McCarron: The volatilization of tungsten in the presence of water vapor. J. Phys. Chem. 68, 1852–1856 (1964).

    CAS  Google Scholar 

  28. 28.

    G.R. Belton and A.S. Jordan: The volatilization of molybdenum in the presence of water vapor. J. Phys. Chem. 69, 2065–2071 (1965).

    CAS  Google Scholar 

  29. 29.

    G.R. Belton and A.S. Jordan: The gaseous hydroxides of cobalt and nickel. J. Phys. Chem. 71, 4114–4120 (1967).

    CAS  Google Scholar 

  30. 30.

    Y.W. Kim and G.R. Belton: The thermodynamics of volatilization of chromic oxide: Part I. The species CrO3 and CrO2OH. Metall. Trans. 5, 1811–1816 (1974).

    CAS  Google Scholar 

  31. 31.

    A. Hashimoto: The effect of H2O gas on volatilities of planet forming major elements: I. Experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula. Geochim. Cosmochim. Acta 56, 511–532 (1992).

    CAS  Google Scholar 

  32. 32.

    N.S. Jacobson, E.J. Opila, D.L. Myers, and E.H. Copland: Thermodynamics of gas phase species in the Si—O–H system. J. Chem. Thermodyn. 37, 1130–1137 (2005).

    CAS  Google Scholar 

  33. 33.

    J. Drowart and P. Goldfinger: Investigation of inorganic systems at high temperature by mass spectrometry. Angew. Chem., Int. Ed. 6, 581–596 (1967).

    CAS  Google Scholar 

  34. 34.

    E.J. Opila, J.L. Smialek, R.C. Robinson, D.S. Fox, and N.S. Jacobson: SiC recession caused by SiO2 scale volatility under combustion conditions: II, thermodynamics and gaseous-diffusion model. J. Am. Ceram. Soc. 82, 1826–1834 (1999).

    CAS  Google Scholar 

  35. 35.

    O.H. Krikorian: Thermodynamics of the silica-steam system. In Symposium on Engineering with Nuclear Explosives (Las Vegas, Nevada, 1970). (unpublished).

  36. 36.

    C.L. Darling and H.B. Schlegel: Heats of formation of SiHnO and SiHnO2 calculated by ab initio molecular orbital methods at the G-2 level of theory. J. Phys. Chem. 97, 8207–8211 (1993).

    CAS  Google Scholar 

  37. 37.

    M.D. Allendorf, C.F. Melius, P. Ho, and M.R. Zachariah: Theoretical study of the thermochemistry of molecules in the Si—O–H system. J. Phys. Chem. 99, 15285–15293 (1995).

    CAS  Google Scholar 

  38. 38.

    A.V. Plyasunov: Thermodynamic properties of H4SiO4 in the ideal gas state as evaluated from experimental data. Geochim. Cosmochim. Acta 75, 3853–3865 (2011).

    CAS  Google Scholar 

  39. 39.

    L.V. Gurvich, I.V. Veyts, and C.B. Alcock: Thermodynamic properties of individual substances: Elements O, H (D, T), F, Cl, Br, I, He, Ne, Ar, Kr, Xe, Rn, S, N, P and their compounds. Pt. 1. Methods and computation. Pt. 2. Tables. Vol. 1–2. Hemisphere, (1989) and Vol. 3, Begell House, Inc., New York (1989).

    Google Scholar 

  40. 40.

    B.B. Ebbinghaus: Thermodynamics of gas phase chromium species: The chromium oxides, the chromium oxyhydroxides, and volatility calculations in waste incineration processes. Combust. Flame 93, 119–137 (1993).

    CAS  Google Scholar 

  41. 41.

    M. Stanislowski, E. Wessel, K. Hilpert, T. Markus, and L. Singheiser: Chromium Vaporization from High Temperature Alloys I. Chromia-Forming Steels and the Influence of Outer Oxide Layers. J. Electrochem. Soc. 154, A295–A306 (2007).

    CAS  Google Scholar 

  42. 42.

    Q.N. Nguyen, D.L. Myers, N.S. Jacobson, and E.J. Opila: Experimental and theoretical study of the reactions of titania and water at high temperatures. NASA/TM—2014-218372 (2014).

  43. 43.

    Q.N. Nguyen, C.W. Bauschlicher, Jr., D.L. Myers, N.S. Jacobson, and E.J. Opila: Computational and experimental study of thermodynamics of the reaction of titania and water at high temperatures. J. Phys. Chem. A 121, 9508–9517 (2017).

    CAS  Google Scholar 

  44. 44.

    G.H. Geiger and D.R. Poirer: Transport Phenomena in Metallurgy, Vol. 532 (Addison-Wesley Publishing Co., Reading, Massachusetts, 1972).

  45. 45.

    S.L. dos Santos e Lucato, O.H. Sudre, and D.B. Marshall: A method for assessing reactions of water vapor with materials in high-speed, high-temperature flow. J. Am. Ceram. Soc. 94, 186–195 (2011).

    Google Scholar 

  46. 46.

    R.A. Golden and E.J. Opila: A method for assessing the volatility of oxides in high-temperature high velocity vapor. J. Eur. Ceram. Soc. 36, 1135–1147 (2016).

    CAS  Google Scholar 

  47. 47.

    K.A. Mueller, R.A. Golden, and E.J. Opila: High temperature behavior of Ta2O5 in water vapor. The Spectra, IX, 50–55 (2018).

    Google Scholar 

  48. 48.

    O.H. Krikorian: Predictive calculations of volatilities of metals and oxides in steam containing environments. High Temp.-High Pressures 14, 387–397 (1982).

    CAS  Google Scholar 

  49. 49.

    F.T. Greene: Applications of electronic spectroscopy to high-temperature systems. In The Characterization of High Temperature Vapors, J.L. Margrave, ed. (John Wiley & Sons, New York, 1967); pp. 300–358.

    Google Scholar 

  50. 50.

    M.W. Chase, Jr.: NIST-JANAF Thermochemical Tables, 4th ed. Published by the American Chemical Society, the American Institute of Physics, and the National Institute of Standards and Technology. J. Phys. Chem. Ref. Data, Monograph No. 9 (1998).

  51. 51.

    A.V. Plyasunov, A.S. Zyubin, and T.S. Zyubina: Thermodynamic properties of Si(OH)4(g) based on experimental and quantum chemistry data. J. Am. Ceram. Soc. 101, 4921–4926 (2018).

    CAS  Google Scholar 

  52. 52.

    J.M.L. Martin: Basis set convergence and performance of density functional theory including exact exchange contributions for geometries and harmonic frequencies. Mol. Phys. 86, 1437 (1995).

    CAS  Google Scholar 

  53. 53.

    A.P. Scott and L. Radom: Harmonic vibrational frequencies: An evaluation of Hartree—Fock, moller—Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 100, 16502–16513 (1996).

    CAS  Google Scholar 

  54. 54.

    K.S. Pitzer and W.D. Gwinn: Energy levels and thermodynamic functions for molecules with internal rotation: I. Rigid frame with attached tops. In Molecular Structure and Statistical Thermodynamics: Selected Papers of, Kenneth S. Pitzer, ed. (World Scientific, Singapore, 1993); pp. 33–46.

    Google Scholar 

  55. 55.

    E. Courcot, F. Rebillat, F. Teyssandier, and C. Louchet-Pouillerie: Stability of rare earth oxides in a moist environment at high temperatures—Experimental and thermodynamic studies. Part I: The way to assess thermodynamic parameters from volatilisation rates. J. Eur. Ceram. Soc. 30, 1903–1909 (2010).

    CAS  Google Scholar 

  56. 56.

    E. Courcot, F. Rebillat, F. Teyssandier, and C. Louchet-Pouillerie: Stability of rare earth oxides in a moist environment at elevated temperatures—Experimental and thermodynamic studies: Part II: Comparison of the rare earth oxides. J. Eur. Ceram. Soc. 30, 1911–1917 (2010).

    CAS  Google Scholar 

  57. 57.

    C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen: FactSage thermochemical software and databases. Calphad 26, 189–228 (2002).

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Nathan S. Jacobson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Myers, D.L., Jacobson, N.S., Bauschlicher, C.W. et al. Thermochemistry of volatile metal hydroxides and oxyhydroxides at elevated temperatures. Journal of Materials Research 34, 394–407 (2019).

Download citation