Misfit strain relaxations of (101)-oriented ferroelectric PbTiO3/(La, Sr)(Al, Ta)O3 thin film systems


High-index ferroelectric thin films show excellent dielectricity, piezoelectricity and switching behaviors. Understanding the misfit strain relaxation behavior may prove beneficial to gaining insights into the high-quality growth of high-index ferroelectric films. In this study, ferroelectric PbTiO3 thin films were deposited on the (101)-oriented (La, Sr)(Al, Ta)O3 substrate by pulsed laser deposition and were investigated using (scanning) transmission electron microscopy. Two types of misfit dislocations with line directions of <111> and [010] were found at the interface. The <111> dislocation exhibited Burgers vectors of a [011] or [01\(\overline{1}\)1], while the [010] dislocation featured Burgers vectors of a[\(\overline{1}\)01]. The former might be generated by gliding, and the latter by climbing. We propose that the misfit strain relaxation in this film system basically results from the formation of dislocations and the residual misfit strain is relaxed via the formation of 90° ac domains.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6


  1. 1.

    J.F. Scott: Applications of modern ferroelectrics. Science 315, 954 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, and S. Streiffer: Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).

    Article  Google Scholar 

  3. 3.

    L.W. Martin and A.M. Rappe: Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 1 (2016).

    CAS  Google Scholar 

  4. 4.

    D.G. Schlom, L.Q. Chen, C.J. Fennie, V. Gopalan, D.A. Muller, X.Q. Pan, R. Ramesh, and R. Uecker: Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    S.Y. Hu, Y.L. Li, and L.Q. Chen: Effect of interfacial dislocations on ferroelectric phase stability and domain morphology in a thin film—A phase-field model. J. Appl. Phys. 94, 2542 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    D. Su, Q. Meng, C.A.F. Vaz, M-G. Han, Y. Segal, F.J. Walker, M. Sawicki, C. Broadbridge, and C.H. Ahn: Origin of 90° domain wall pinning in Pb(Zr0.2Ti0.8)O3 heteroepitaxial thin films. Appl. Phys. Lett. 99, 102902 (2011).

    Article  Google Scholar 

  7. 7.

    Y. Liu, Y.L. Tang, Y.L. Zhu, W.Y. Wang, and X.L. Ma: Spatial coupling of ferroelectric domain walls and crystallographic defects in the PbTiO3 films. Adv. Mater. Interfaces 3, 1600342 (2016).

    Article  Google Scholar 

  8. 8.

    M.W. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe, and U. Gosele: Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat. Mater. 3, 87 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    V. Nagarajan, C.L. Jia, H. Kohlstedt, R. Waser, I.B. Misirlioglu, S.P. Alpay, and R. Ramesh: Misfit dislocations in nanoscale ferroelectric heterostructures. Appl. Phys. Lett. 86, 192910 (2005).

    Article  Google Scholar 

  10. 10.

    C.L. Jia, S.B. Mi, K. Urban, I. Vrejoiu, M. Alexe, and D. Hesse: Effect of a single dislocation in a heterostructure layer on the local polarization of a ferroelectric layer. Phys. Rev. Lett. 102, 117601 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    P. Gao, C.T. Nelson, J.R. Jokisaari, S.H. Baek, C.W. Bark, Y. Zhang, E. Wang, D.G. Schlom, C.B. Eom, and X.Q. Pan: Revealing the role of defects in ferroelectric switching with atomic resolution. Nat. Commun. 2, 591 (2011).

    Article  Google Scholar 

  12. 12.

    S.C. Jain, A.H. Harker, and R.A. Cowley: Misfit strain and misfit dislocations in lattice mismatched epitaxial layers and other systems. Philos. Mag. A 75, 1461 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    H.H. Wu, J. Wang, S.G. Cao, and T.Y. Zhang: Effect of dislocation walls on the polarization switching of a ferroelectric single crystal. Appl. Phys. Lett. 102, 232904 (2013).

    Article  Google Scholar 

  14. 14.

    Y.L. Tang, Y.L. Zhu, Y. Liu, Y.J. Wang, and X.L. Ma: Giant linear strain gradient with extremely low elastic energy in a perovskite nanostructure array. Nat. Commun. 8, 15994 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    S. Stemmer, S.K. Streiffer, F. Ernst, and M. Ruhle: Dislocations in PbTiO3 thin films. Phys. Status Solidi A 147, 135 (1995).

    CAS  Article  Google Scholar 

  16. 16.

    T. Suzuki, Y. Nishi, and M. Fujimoto: Analysis of misfit relaxation in heteroepitaxial BaTiO3 thin films. Philos. Mag. A 79, 2461 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    Y.L. Zhu, X.L. Ma, D.X. Li, H.B. Lu, Z.H. Chen, and G.Z. Yang: Microstructural analyses of a highly conductive Nb-doped SrTiO3 film. Acta Mater. 53, 1277 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    I.B. Misirlioglu, A.L. Vasiliev, S.P. Alpay, M. Aindow, and R. Ramesh: Defect microstructures in epitaxial PbZr0.2Ti0.8O3 films grown on (001) SrTiO3 by pulsed laser deposition. J. Mater. Sci. 41, 697 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    Y.L. Qin, C.L. Jia, K. Urban, J.H. Hao, and X.X. Xi: Dislocations in SrTiO3 thin films grown on LaAlO3 substrates. J. Mater. Res. 17, 3117 (2011).

    Article  Google Scholar 

  20. 20.

    Y.L. Tang, Y.L. Zhu, H. Meng, Y.Q. Zhang, and X.L. Ma: Misfit dislocations of anisotropic magnetoresistant Nd0.45Sr0.55MnO3 thin films grown on SrTiO3 (110) substrates. Acta Mater. 60, 5975 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Y.L. Tang, Y.L. Zhu, Y.Q. Zhang, Z.D. Zhang, and X.L. Ma: Nanostructured Nd0.45Sr0.55MnO3 films grown on SrTiO3 (110). J. Mater. Res. 28, 1692 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    X. Shen, T. Yamada, R. Lin, T. Kamo, H. Funakubo, D. Wu, H.L. Xin, and D. Su: Interfacial dislocations in (111) oriented (Ba0.7Sr0.3)TiO3 films on SrTiO3 single crystal. Appl. Phys. Lett. 107, 141605 (2015).

    Article  Google Scholar 

  23. 23.

    Y.B. Xu, Y.L. Tang, Y.L. Zhu, Y. Liu, S. Li, S.R. Zhang, and X.L. Ma: Misfit strain relaxation of ferroelectric PbTiO3/LaAlO3 (111) thin film system. Sci. Rep. 6, 35172 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    M. Mtebwa, A. Mazzalai, C.S. Sandu, A. Crassous, and N. Setter: Engineered a / c domain patterns in multilayer (110) epitaxial Pb(Zr, Ti)O3 thin films: Impact on domain compliance and piezoelectric properties. AIP Adv. 6, 055104 (2016).

    Article  Google Scholar 

  25. 25.

    Y.P. Feng, Y.L. Tang, D.S. Ma, Y.L. Zhu, M.J. Zou, M.J. Han, J.Y. Ma, and X.L. Ma: Thickness-dependent evolution of piezoresponses and stripe 90° domains in (101)-oriented ferroelectric PbTiO3 thin films. ACS Appl. Mater. Interfaces 10, 24627 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    R.J. Xu, J. Karthik, A.R. Damodaran, and L.W. Martin: Stationary domain wall contribution to enhanced ferroelectric susceptibility. Nat. Commun. 5, 3120 (2014).

    Article  Google Scholar 

  27. 27.

    R.J. Xu, S. Liu, I. Grinberg, J. Karthik, A.R. Damodaran, A.M. Rappe, and L.W. Martin: Ferroelectric polarization reversal via successive ferroelastic transitions. Nat. Mater. 14, 79 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    W. Zhang, H. Cheng, Q. Yang, F. Hu, and J. Ouyang: Crystallographic orientation dependent dielectric properties of epitaxial BaTiO3 thin films. Ceram. Int. 42, 4400 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    A.M. Glazer and S.A. Mabud: Powder profile refinement of lead zirconate titanate at several temperatures. II. Pure PbTiO3. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 34, 1065 (1978).

    Article  Google Scholar 

  30. 30.

    D. Mateika, H. Kohler, H. Laudan, and E. Volkel: Mixed-perovskite substrates for high-Tc superconductors. J. Cryst. Growth 109, 447 (1991).

    CAS  Article  Google Scholar 

  31. 31.

    D.B. Williams and C.B. Carter: Transmission Electron Microscopy, 2nd ed. (Springer, New York, 2009); p. 445.

    Google Scholar 

  32. 32.

    S.J. Pennycook and D.E. Jesson: High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14 (1991).

    Article  Google Scholar 

  33. 33.

    M.J. Hytch, E. Snoeck, and R. Kilaas: Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131 (1998).

    CAS  Article  Google Scholar 

  34. 34.

    Y.L. Tang, Y.L. Zhu, and X.L. Ma: On the benefit of aberration-corrected HAADF-STEM for strain determination and its application to tailoring ferroelectric domain patterns. Ultramicroscopy 160, 57 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    G. Shirane, S. Hoshino, and K. Suzuki: X-ray study of the phase transition in lead titanate. Phys. Rev. 80, 1105 (1950).

    CAS  Article  Google Scholar 

  36. 36.

    B.C. Chakoumakos, D.G. Schlom, M. Urbanik, and J. Luine: Thermal expansion of LaAlO3 and (La, Sr)(Al, Ta)O3, substrate materials for superconducting thin-film device applications. J. Appl. Phys. 83, 1979 (1998).

    CAS  Article  Google Scholar 

  37. 37.

    P.A. Langjahr, F.F. Lange, T. Wagner, and M. Ruhle: Lattice mismatch accommodation in perovskite films on perovskite substrates. Acta Mater. 46, 773 (1998).

    CAS  Article  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (Nos. 51571197, 51501194, and 51671194), National Basic Research Program of China (2014CB921002), and the Key Research Program of Frontier Sciences CAS (QYZDJ-SSW-JSC010). Y.L.T. acknowledges the IMR SYNL-T.S. Kê Research Fellowship and the Youth Innovation Promotion Association CAS (No. 2016177). The authors are grateful to Mr. B. Wu and Mr. L.X. Yang for their technical support on the Titan platform of G2 60-300 kV aberration-corrected scanning transmission electron microscope.

Author information



Corresponding author

Correspondence to Yinlian Zhu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Tang, Y., Zhu, Y. et al. Misfit strain relaxations of (101)-oriented ferroelectric PbTiO3/(La, Sr)(Al, Ta)O3 thin film systems. Journal of Materials Research 33, 4156–4164 (2018). https://doi.org/10.1557/jmr.2018.422

Download citation