Abstract
Transient transmission oscillations in X-cut and Z-cut congruent, iron-doped, and magnesium-doped lithium niobate samples were measured using 50 fs, 800 nm, 0.5 nJ pulses from a self-mode-locked Ti:sapphire laser in an optical pump–probe system. Several Raman-active oscillation modes excited by these pulses were observed as changes in the transmitted probe intensity versus time delay between the pump and probe pulses. The samples were rotated to determine how the incident polarization of the pump pulses affects the mode excitations. The observed Raman-active oscillations correspond to previously reported symmetry modes measured with traditional, continuous-wave, Raman spectroscopy using the same scattering geometry. In addition, a polariton mode and other, previously unreported, lower-frequency modes were observed in each of the samples. The transmission intensity data for each sample were fit successfully to a superposition of sinusoidal functions with exponentially decaying amplitudes.
This is a preview of subscription content, access via your institution.








References
- 1.
R.S. Weis and T.K. Gaylord: Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 37, 191 (1985).
- 2.
A. Yariv, S.S. Orlov, and G.A. Rakuljic: Holographic storage dynamics in lithium niobate: Theory and experiment. J. Opt. Soc. Am. B 13, 2513 (1996).
- 3.
R. Mankowsky, A. von Hoegen, M. Först, and A. Cavalleri: Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).
- 4.
R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, and D.T. Reid: Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime. Appl. Phys. Lett. 88, 111109 (2006).
- 5.
V.S. Gorelik and P.P. Sverbil: Raman scattering by longitudinal and transverse optical vibrations in lithium niobate single crystals. Inorg. Mater. 51, 1104 (2015).
- 6.
R.F. Schauzele and M.J. Weber: Raman scattering by lithium niobate. Phys. Rev. 152, 705 (1966).
- 7.
Y. Zhang, L. Guilbert, P. Bourson, K. Polgár, and M.D. Fontana: Characterization of short-range heterogeneities in sub-congruent lithium niobate by micro-Raman spectroscopy. J. Phys.: Condens. Matter 18, 957 (2006).
- 8.
Y. Ikegaya, H. Sakaibara, Y. Minami, I. Katayama, and J. Takeda: Real-time observation of phonon-polariton dynamics in ferroelectric LiNbO3 in time- frequency space. Appl. Phys. Lett. 107, 062901 (2015).
- 9.
P.C.M. Planken, L.D. Noordam, T.M. Kermis, and A. Lagendijk: Femtosecond time-resolved study of the generation and propagation of phonon polaritons in LiNbO3. Phys. Rev. B 45, 7106 (1992).
- 10.
V.S. Gorelik, O.G. Zolotukhin, T.V. Moskaleva, and M.M. Sushchinskiĭ: Stimulated Raman scattering by transverse and longitudinal lattice vibrations in LiNbO3 and LiTaO3. Sov. J. Quant. Electron. 13, 1300 (1983).
- 11.
L. Dhar, J.A. Rogers, and K.A. Nelson: Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157 (1994).
- 12.
D. Turchinovich, P. Uhd Jepsen, B.S. Monozon, M. Koch, S. Lahmann, U. Rossow, and A. Hangleiter: Ultrafast polarization dynamics in biased quantum wells under strong femtosecond optical excitation. Phys. Rev. B 68, 241307 (2003).
- 13.
O. Beyer, I. Breunig, F. Kalkum, and K. Buse: Photorefractive effect in iron-doped lithium niobate crystals induced by femtosecond pulses of 1.5 µm wavelength. Appl. Phys. Lett. 88, 051120 (2006).
- 14.
T.R. Volk, V.I. Pryalkin, and N.M. Rubinina: Optical-damage-resistant LiNbO3:Zn crystal. Opt. Lett. 15, 996 (1990).
- 15.
Y. Furukawa, K. Kitamura, Y. Ji, G. Montemezzani, M. Zgonik, C. Medrano, and P. Günter: Photorefractive properties of iron-doped stoichiometric lithium niobate. Opt. Lett. 22, 501 (1997).
- 16.
R. Mouras, M.D. Fontana, P. Bourson, and A.V. Postnikov: Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy. J. Phys.: Condens. Matter 12, 5053 (2000).
- 17.
K. Buse, A. Adibi, and D. Psaltis: Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 393, 665 (1998).
- 18.
G.J. Taft, M.T. Newby, J.J. Hrebik, M. Onellion, T.F. George, D. Szentesi, S. Szatmari, and L. Nanai: Ultrafast dynamic reflectivity of vanadium pentoxide. J. Mater. Res. 23, 308 (2008).
- 19.
G. Taft, A. Rundquist, M.M. Murnane, H.C. Kapteyn, K. DeLong, R. Trebino, and I. Christov: Ultrafast optical waveform measurements using frequency resolved optical gating. Opt. Lett. 20, 743 (1995).
- 20.
O. Beyer, D. Maxein, K. Buse, B. Sturman, H.T. Hsieh, and D. Psaltis: Femtosecond time-resolved absorption processes in lithium niobate crystals. Opt. Lett. 30, 1366 (2005).
- 21.
J. Hu, O.V. Misochko, H. Takahashi, H. Koguchi, T. Eda, and K.G. Nakamura: Ultrafast zone-center coherent lattice dynamics in ferroelectric lithium tantalate. Sci. Technol. Adv. Mater. 12, 034409 (2011).
- 22.
H. Sasaki, R. Tanaka, Y. Okano, F. Minami, Y. Kayanuma, Y. Shikano, and K.G. Nakamura: Coherent control theory and experiment of optical phonons in diamond. Sci. Rep. 8, 9609 (2018).
ACKNOWLEDGMENTS
We would like to thank Dean Langley in the Department of Physics at the College of Saint Benedict/Saint John’s University for providing much of the equipment used for this work. We also would like to recognize Robert Skibba who performed some initial transmission measurements with the system.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Crossman, B.J., Taft, G.J. Transient transmission oscillations in doped and undoped lithium niobate induced by near-infrared femtosecond pulses. Journal of Materials Research 33, 4207–4214 (2018). https://doi.org/10.1557/jmr.2018.414
Received:
Accepted:
Published:
Issue Date: