Transient transmission oscillations in doped and undoped lithium niobate induced by near-infrared femtosecond pulses

Abstract

Transient transmission oscillations in X-cut and Z-cut congruent, iron-doped, and magnesium-doped lithium niobate samples were measured using 50 fs, 800 nm, 0.5 nJ pulses from a self-mode-locked Ti:sapphire laser in an optical pump–probe system. Several Raman-active oscillation modes excited by these pulses were observed as changes in the transmitted probe intensity versus time delay between the pump and probe pulses. The samples were rotated to determine how the incident polarization of the pump pulses affects the mode excitations. The observed Raman-active oscillations correspond to previously reported symmetry modes measured with traditional, continuous-wave, Raman spectroscopy using the same scattering geometry. In addition, a polariton mode and other, previously unreported, lower-frequency modes were observed in each of the samples. The transmission intensity data for each sample were fit successfully to a superposition of sinusoidal functions with exponentially decaying amplitudes.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    R.S. Weis and T.K. Gaylord: Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 37, 191 (1985).

    Article  Google Scholar 

  2. 2.

    A. Yariv, S.S. Orlov, and G.A. Rakuljic: Holographic storage dynamics in lithium niobate: Theory and experiment. J. Opt. Soc. Am. B 13, 2513 (1996).

    CAS  Article  Google Scholar 

  3. 3.

    R. Mankowsky, A. von Hoegen, M. Först, and A. Cavalleri: Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, and D.T. Reid: Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime. Appl. Phys. Lett. 88, 111109 (2006).

    Article  Google Scholar 

  5. 5.

    V.S. Gorelik and P.P. Sverbil: Raman scattering by longitudinal and transverse optical vibrations in lithium niobate single crystals. Inorg. Mater. 51, 1104 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    R.F. Schauzele and M.J. Weber: Raman scattering by lithium niobate. Phys. Rev. 152, 705 (1966).

    Article  Google Scholar 

  7. 7.

    Y. Zhang, L. Guilbert, P. Bourson, K. Polgár, and M.D. Fontana: Characterization of short-range heterogeneities in sub-congruent lithium niobate by micro-Raman spectroscopy. J. Phys.: Condens. Matter 18, 957 (2006).

    Google Scholar 

  8. 8.

    Y. Ikegaya, H. Sakaibara, Y. Minami, I. Katayama, and J. Takeda: Real-time observation of phonon-polariton dynamics in ferroelectric LiNbO3 in time- frequency space. Appl. Phys. Lett. 107, 062901 (2015).

    Article  Google Scholar 

  9. 9.

    P.C.M. Planken, L.D. Noordam, T.M. Kermis, and A. Lagendijk: Femtosecond time-resolved study of the generation and propagation of phonon polaritons in LiNbO3. Phys. Rev. B 45, 7106 (1992).

    CAS  Article  Google Scholar 

  10. 10.

    V.S. Gorelik, O.G. Zolotukhin, T.V. Moskaleva, and M.M. Sushchinskiĭ: Stimulated Raman scattering by transverse and longitudinal lattice vibrations in LiNbO3 and LiTaO3. Sov. J. Quant. Electron. 13, 1300 (1983).

    Article  Google Scholar 

  11. 11.

    L. Dhar, J.A. Rogers, and K.A. Nelson: Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157 (1994).

    CAS  Article  Google Scholar 

  12. 12.

    D. Turchinovich, P. Uhd Jepsen, B.S. Monozon, M. Koch, S. Lahmann, U. Rossow, and A. Hangleiter: Ultrafast polarization dynamics in biased quantum wells under strong femtosecond optical excitation. Phys. Rev. B 68, 241307 (2003).

    Article  Google Scholar 

  13. 13.

    O. Beyer, I. Breunig, F. Kalkum, and K. Buse: Photorefractive effect in iron-doped lithium niobate crystals induced by femtosecond pulses of 1.5 µm wavelength. Appl. Phys. Lett. 88, 051120 (2006).

    Article  Google Scholar 

  14. 14.

    T.R. Volk, V.I. Pryalkin, and N.M. Rubinina: Optical-damage-resistant LiNbO3:Zn crystal. Opt. Lett. 15, 996 (1990).

    CAS  Article  Google Scholar 

  15. 15.

    Y. Furukawa, K. Kitamura, Y. Ji, G. Montemezzani, M. Zgonik, C. Medrano, and P. Günter: Photorefractive properties of iron-doped stoichiometric lithium niobate. Opt. Lett. 22, 501 (1997).

    CAS  Article  Google Scholar 

  16. 16.

    R. Mouras, M.D. Fontana, P. Bourson, and A.V. Postnikov: Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy. J. Phys.: Condens. Matter 12, 5053 (2000).

    CAS  Google Scholar 

  17. 17.

    K. Buse, A. Adibi, and D. Psaltis: Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 393, 665 (1998).

    CAS  Article  Google Scholar 

  18. 18.

    G.J. Taft, M.T. Newby, J.J. Hrebik, M. Onellion, T.F. George, D. Szentesi, S. Szatmari, and L. Nanai: Ultrafast dynamic reflectivity of vanadium pentoxide. J. Mater. Res. 23, 308 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    G. Taft, A. Rundquist, M.M. Murnane, H.C. Kapteyn, K. DeLong, R. Trebino, and I. Christov: Ultrafast optical waveform measurements using frequency resolved optical gating. Opt. Lett. 20, 743 (1995).

    CAS  Article  Google Scholar 

  20. 20.

    O. Beyer, D. Maxein, K. Buse, B. Sturman, H.T. Hsieh, and D. Psaltis: Femtosecond time-resolved absorption processes in lithium niobate crystals. Opt. Lett. 30, 1366 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    J. Hu, O.V. Misochko, H. Takahashi, H. Koguchi, T. Eda, and K.G. Nakamura: Ultrafast zone-center coherent lattice dynamics in ferroelectric lithium tantalate. Sci. Technol. Adv. Mater. 12, 034409 (2011).

    Article  Google Scholar 

  22. 22.

    H. Sasaki, R. Tanaka, Y. Okano, F. Minami, Y. Kayanuma, Y. Shikano, and K.G. Nakamura: Coherent control theory and experiment of optical phonons in diamond. Sci. Rep. 8, 9609 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Dean Langley in the Department of Physics at the College of Saint Benedict/Saint John’s University for providing much of the equipment used for this work. We also would like to recognize Robert Skibba who performed some initial transmission measurements with the system.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Taft.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crossman, B.J., Taft, G.J. Transient transmission oscillations in doped and undoped lithium niobate induced by near-infrared femtosecond pulses. Journal of Materials Research 33, 4207–4214 (2018). https://doi.org/10.1557/jmr.2018.414

Download citation