Microstructure evolution and properties of in situ synthesized TiB2-reinforced aluminum alloy by laser surface alloying

Abstract

In the present work, the TiB2-reinforced AA6061 composites were successfully in situ synthesized by laser surface alloying using a mixture of Ti and AlB2 powders. The microstructure evolution and properties of the composites were systematically studied. The results showed that TiB2 particles displayed a homogeneous distribution in the aluminum matrix with controllable contents and morphologies. By adjusting the molar ratio of alloying powders, phase constitution of the composites was varied. Thermodynamic calculation was used to analyze the phase selection during the solidification. It was found that the morphology of TiB2 particles was converted from hexagonal plate into rod-like structure with an increase of Ti contents. Transmission electron microscopy results illustrated that the in situ synthesized TiB2 particles exhibited a well-bonded interface with the Al matrix. Properties characterization revealed a significant enhancement in microhardness and abrasion resistance compared with the aluminum substrate attributed to the presence of the TiB2 reinforcements. The strengthening and wear mechanism were also discussed.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    Y.X. Li, P.F. Zhang, P.K. Bai, L.Y. Wu, B. Liu, and Z.Y. Zhao: Microstructure and properties of Ti/TiBCN coating on 7075 aluminum alloy by laser cladding. Surf. Coat. Technol. 334, 142 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    A. Sobolev, A. Kossenko, M. Zinigrad, and K. Borodianskiy: Comparison of plasma electrolytic oxidation coatings on Al alloy created in aqueous solution and molten salt electrolytes. Surf. Coat. Technol. 344, 590 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    R.A. Fernandez, H. Springer, A. Szczepaniak, H. Zhang, and D. Raabe: In situ metal matrix composite steels: Effect of alloying and annealing on morphology, structure and mechanical properties of TiB2 particle containing high modulus steels. Acta Mater. 107, 38 (2016).

    Article  Google Scholar 

  4. 4.

    D. Tijo and M. Masanta: In situ TiC–TiB2 coating on Ti–6Al–4V alloy by tungsten inert gas (TIG) cladding method: Part-II. Mechanical performance. Surf. Coat. Technol. 344, 579 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    C.S. Ramesh, R. Keshavamurthy, B.H. Channabasappa, and S. Pramod: Development of Al 6063–TiB in situ composites. Mater. Des. 31, 2230 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    W.W. Zhou, T. Yamaguchi, K. Kikuchi, N. Nomura, and A. Kawasaki: Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater. 125, 369 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    C. Chen, X.M. Feng, and Y.F. Shen: Synthesis of Al–B4C composite coating on Ti–6Al–4V alloy substrate by mechanical alloying method. Surf. Coat. Technol. 321, 8 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    L.M. Tham, M. Gupta, and L. Cheng: Effect of reinforcement volume fraction on the evolution of reinforcement size during the extrusion of Al–SiC composites. Mater. Sci. Eng., A 326, 355 (2002).

    Article  Google Scholar 

  9. 9.

    W.Q. Liu, X.C. Li, C.Z. Cao, J.Q. Xu, and X.J. Wang: Molten salt assisted solidification nanoprocessing of Al–TiC nanocomposites. Mater. Lett. 185, 392 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    L. Ceschini, G. Minak, A. Morri, and F. Tarterini: Forging of the AA6061/23 vol%Al2O3p composite: Effects on microstructure and tensile properties. Mater. Sci. Eng., A 513, 176 (2009).

    Article  Google Scholar 

  11. 11.

    K.B. Lee, H.S. Sim, H. Kwon, and S.Y. Cho: Tensile properties of 5052 Al matrix composites reinforced with B4C particles. Metall. Mater. Trans. A 32, 2142 (2001).

    Article  Google Scholar 

  12. 12.

    J. Zheng, Q. Li, W. Liu, and G. Shu: Microstructure evolution of 15 wt% boron carbide/aluminum composites during liquid-stirring process. J. Compos. Mater. 50, 3843 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Y.G. Han and Y. Yang: Microstructure and properties of in situ TiB2 matrix composite coatings prepared by plasma spraying. Appl. Surf. Sci. 431, 48 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    S.C. Tjong and Z.Y. Ma: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. 29, 49 (2000).

    Article  Google Scholar 

  15. 15.

    D.S. Qian, X.L. Zhong, Y.Z. Yan, T. Hashimoto, and Z. Liu: Microstructures induced by excimer laser surface melting of the SiCp/Al metal matrix composite. Appl. Surf. Sci. 412, 436 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    T.I. Khan and S. Miller: Surface modification of an aluminium 2124 composite by eutectic alloying. J. Mater. Sci. 36, 1307 (2001).

    CAS  Article  Google Scholar 

  17. 17.

    Z. Zhang, K. Fortin, A. Charette, and X.G. Chen: Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings. J. Mater. Sci. 46, 3176 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    B.S. Du, Z.D. Zou, X.H. Wang, and S.Y. Qu: Laser cladding of in situ TiB2/Fe composite coating on steel. Appl. Surf. Sci. 254, 6489 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    H. Yan, A.H. Wang, Z.T. Xiong, K.D. Xu, and Z.W. Huang: Microstructure and wear resistance of composite layers on a ductile iron with multicarbide by laser surface alloying. Appl. Surf. Sci. 256, 7001 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    R.A. Rapp and X.J. Zheng: Thermodynamic consideration of grain-refinement of aluminum-alloys by titanium and carbon. Metall. Trans. A 22, 3071 (1991).

    Article  Google Scholar 

  21. 21.

    G.K. Sigworth: The grain refining of aluminum and phase relationships in the Al–Ti–B system. Metall. Trans. A 15, 277 (1984).

    Article  Google Scholar 

  22. 22.

    I. Barin and G. Platzki: Thermochemical Data of Pure Substances, 3rd ed. (VCH Press, New York, 1995).

    Google Scholar 

  23. 23.

    P. Xiao, Y. Gao, C. Yang, Z. Liu, and Y. Li: Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles. Mater. Sci. Eng., A 710, 251 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    H.Z. Niu, S.L. Xiao, F.T. Kong, C.J. Zhang, and Y.Y. Chen: Microstructure characterization and mechanical properties of TiB2/TiAl in situ composite by induction skull melting process. Mater. Sci. Eng., A 532, 522 (2012).

    CAS  Google Scholar 

  25. 25.

    S.S. Sahay, K.S. Ravichandran, and R. Atri: Evolution of microstructure and phases in in situ processed Ti–TiB composites containing high volume fractions of TiB whiskers. J. Mater. Res. 11, 4214 (1999).

    Article  Google Scholar 

  26. 26.

    K.B. Panda and K.S.R. Chandran: Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory. Comput. Mater. Sci. 2, 134 (2006).

    Article  Google Scholar 

  27. 27.

    A.A. Hamid, S.H. Thibault, and R. Hamar: Crystal morphology of the compound TiB2. J. Cryst. Growth 713, 744 (1985).

    Article  Google Scholar 

  28. 28.

    K.A. Jackson and J.D. Hunt: Lamellar and rod eutectic growth. Trans. Metall. Soc. AIME 236, 1129 (1966).

    CAS  Google Scholar 

  29. 29.

    P.L. Schaffer, D.N. Miller, and A.K. Dahle: Crystallography of engulfed and pushed TiB2 particles in aluminium. Scr. Mater. 57, 1129 (2007).

    CAS  Article  Google Scholar 

  30. 30.

    B.L. Bramfitt: The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1, 1987 (1970).

    CAS  Article  Google Scholar 

  31. 31.

    P. Villars and L.D. Calvert: Pearson’s handbook of crystallographic data for intermetallic phases, 2nd ed. (ASM International, Materials Park, Ohio, 1991); p. 648.

    Google Scholar 

  32. 32.

    B. AlMangour, D. Grzesiak, and J.M. Yang: Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: Influence of starting TiC particle size and volume content. Mater. Des. 104, 141 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    S.C. Tjong and K.C. Lau: Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites. Mater. Sci. Eng., A 282, 183 (2000).

    Article  Google Scholar 

  34. 34.

    E. Rabinowicz and R.I. Tanner: Friction and wear of materials. J. Appl. Mech. 33, 606 (1995).

    Google Scholar 

  35. 35.

    R. Ipek: Adhesive wear behaviour of B4C and SiC reinforced 4147 Al matrix composites (Al/B4C–Al/SiC). J. Mater. Process. Technol. 162–163, 71 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful for the financial support from the National Key Technologies R&D Program of China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhuguo Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Li, Z., Feng, K. et al. Microstructure evolution and properties of in situ synthesized TiB2-reinforced aluminum alloy by laser surface alloying. Journal of Materials Research 33, 4307–4316 (2018). https://doi.org/10.1557/jmr.2018.413

Download citation