The delayed degradation mechanism and mechanical properties of β-TCP filler in poly(lactide-co-glycolide)/beta-tricalcium phosphate composite suture anchors during short-time degradation in vivo

Abstract

The aim of this study was to investigate the in vivo degradation mechanism and the mechanical properties of poly(lactide-co-glycolide)/beta-tricalcium phosphate (PLGA/β-TCP) composite anchors. Anchors composed of PLGA and β-TCP were implanted in the dorsal subcutaneous tissue of beagle dogs for 6, 12, 16, and 26 weeks. The degradation of the materials was evaluated by measuring the changes in thermal behavior, crystallinity, and mechanical properties. Scanning electron microscope (SEM) was used to observe the surface and longitudinal section of the material. The evaluation of mechanical strength retention and degradation properties suggest that the addition of β-TCP particles efficiently enhances their mechanical properties and thermal characteristics and delays their degradation rate. By analyzing the results of SEM, X-ray diffraction, and differential scanning calorimetry, we can infer that after 12 weeks, the connection between β-TCP and PLGA becomes less compact, which accelerates the decline of mechanical strength.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

References

  1. 1.

    E.S. Dejong, T.M. DeBerardino, D.E. Brooks, and K. Judson: In vivo comparison of a metal versus a biodegradable suture anchor. Arthroscopy 20, 511 (2004).

    Article  Google Scholar 

  2. 2.

    F.A. Barber and S.A. Hrnack: Poly L-lactide co-glycolide/beta-tricalcium phosphate interference screw fixation for bone-patellar tendon bone anterior cruciate ligament reconstruction. J. Knee Surg. 26, 423 (2013).

    Article  Google Scholar 

  3. 3.

    N.J. Gunja and K.A. Athanasiou: Biodegradable materials in arthroscopy. Sports Med. Arthrosc. Rev. 14, 112 (2006).

    Article  Google Scholar 

  4. 4.

    K. Moncal, D. Heo, K. Godzik, D. Sosnoski, O. Mrowczynski, E. Rizk, V. Ozbolat, S. Tucker, E. Gerhard, M. Dey, G. Lewis, J. Yang, and I. Ozbolat: 3D printing of poly(ε-caprolactone)/poly(D,L-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering. J. Mater. Res. 14, 1972 (2018).

    Article  Google Scholar 

  5. 5.

    L.M. Ehrenfried, M.H. Patel, and R.E. Cameron: The effect of tri-calcium phosphate (TCP) addition on the degradation of polylactide-co-glycolide (PLGA). J. Mater. Sci. Mater. Med. 19, 459 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    O. Bostman, E. Hirvensalo, J. Makinen, and P. Rokkanen: Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J. Bone Joint Surg. 72, 592 (1990).

    CAS  Article  Google Scholar 

  7. 7.

    P.U. Rokkanen, O. Bostman, E. Hirvensalo, E.A. Makela, E.K. Partio, H. Patiala, S.I. Vainionpaa, K. Vihtonen, and P. Tormala: Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 21, 2607 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    A. Weiler, H.J. Helling, U. Kirch, T.K. Zirbes, and K.E. Rehm: Foreign-body reaction and the course of osteolysis after polyglycolide implants for fracture fixation: Experimental study in sheep. J. Bone Joint Surg. 78, 369 (1996).

    CAS  Article  Google Scholar 

  9. 9.

    D.S. Mastrokalos and H.H. Paessler: Allergic reaction to biodegradable interference poly-L-lactic acid screws after anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft. Arthroscopy 24, 732 (2008).

    Article  Google Scholar 

  10. 10.

    J.H. Kwak, J.A. Sim, S.H. Kim, K.C. Lee, and B.K. Lee: Delayed intra-articular inflammatory reaction due to poly-L-lactide bioabsorbable interference screw used in anterior cruciate ligament reconstruction. Arthroscopy 24, 243 (2008).

    Article  Google Scholar 

  11. 11.

    M.S. Taylor, A.U. Daniels, K.P. Andriano, and J. Heller: Six bioabsorbable polymers: In vitro acute toxicity of accumulated degradation products. J. Appl. Biomater. 5, 151 (1994).

    CAS  Article  Google Scholar 

  12. 12.

    K. Tecklenburg, P. Burkart, C. Hoser, M. Rieger, and C. Fink: Prospective evaluation of patellar tendon graft fixation in anterior cruciate ligament reconstruction comparing composite bioabsorbable and allograft interference screws. Arthroscopy 22, 993 (2006).

    Article  Google Scholar 

  13. 13.

    P.Q. Ruhe, E.L. Hedberg, N.T. Padron, P.H. Spauwen, J.A. Jansen, and A.G. Mikos: Biocompatibility and degradation of poly(D,L-lactic-co-glycolic acid)/calcium phosphate cement composites. J. Biomed. Mater. Res., Part A 74, 533 (2005).

    Article  Google Scholar 

  14. 14.

    V. Martinek, R. Seil, C. Lattermann, S.C. Watkins, and F.H. Fu: The fate of the poly-L-lactic acid interference screw after anterior cruciate ligament reconstruction. Arthroscopy 17, 73 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    F.A. Barber, D.B. Spenciner, S. Bhattacharyya, and L.E. Miller: Biocomposite implants composed of poly(lactide-co-glycolide)/beta-tricalcium phosphate: Systematic review of imaging, complication, and performance outcomes. Arthroscopy 33, 683 (2017).

    Article  Google Scholar 

  16. 16.

    F.D. Bach, R.Y. Carlier, J.B. Elis, D.M. Mompoint, A. Feydy, O. Judet, P. Beaufils, and C. Vallee: Anterior cruciate ligament reconstruction with bioabsorbable polyglycolic acid interference screws: MR imaging follow-up. Radiology 225, 541 (2002).

    Article  Google Scholar 

  17. 17.

    J.B. Ticker, R.J. Lippe, D.E. Barkin, and M.P. Carroll: Infected suture anchors in the shoulder. Arthroscopy 12, 613 (1996).

    CAS  Article  Google Scholar 

  18. 18.

    K.H. Frosch, T. Sawallich, G. Schutze, A. Losch, T. Walde, P. Balcarek, F. Konietschke, and K.M. Sturmer: Magnetic resonance imaging analysis of the bioabsorbable Milagro interference screw for graft fixation in anterior cruciate ligament reconstruction. Strategies Trauma Limb Reconstr. 4, 73 (2009).

    Article  Google Scholar 

  19. 19.

    L. Lin, T. Wang, Q. Zhou, and N. Qian: The effects of different amounts of drug microspheres on the vivo and vitro performance of the PLGA/beta-TCP scaffold. Des. Monomers Polym. 20, 351 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    M.A. Tracy, K.L. Ward, L. Firouzabadian, Y. Wang, N. Dong, R. Qian, and Y. Zhang: Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials 20, 1057 (1999).

    CAS  Article  Google Scholar 

  21. 21.

    T. Nieminen, I. Rantala, I. Hiidenheimo, J. Keranen, H. Kainulainen, E. Wuolijoki, and I. Kallela: Degradative and mechanical properties of a novel resorbable plating system during a 3-year follow-up in vivo and in vitro. J. Mater. Sci. Mater. Med. 19, 1155 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    S.S. Jensen, M.M. Bornstein, M. Dard, D.D. Bosshardt, and D. Buser: Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J. Biomed. Mater. Res., Part B 90, 171 (2009).

    Google Scholar 

  23. 23.

    S.S. Jensen, A. Yeo, M. Dard, E. Hunziker, R. Schenk, and D. Buser: Evaluation of a novel biphasic calcium phosphate in standardized bone defects: A histologic and histomorphometric study in the mandibles of minipigs. Clin. Oral Implants Res. 18, 752 (2007).

    Article  Google Scholar 

  24. 24.

    S.K. Nandi, G. Fielding, D. Banerjee, A. Bandyopadhyay, and S. Bose: 3D-printed β-TCP bone tissue engineering scaffolds: Effects of chemistry on in vivo biological properties in a rabbit tibia model. J. Mater. Res. 14, 1939 (2018).

    Article  Google Scholar 

  25. 25.

    M. Obadal, R. Čermák, M. Raab, V. Verney, S. Commereuc, and F. Fraïsse: Structure evolution of α- and β-polypropylenes upon UV irradiation: A multiscale comparison. Polym. Degrad. Stab. 88, 532 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    M. Therin, P. Christel, S. Li, H. Garreau, and M. Vert: In vivo degradation of massive poly(alpha-hydroxy acids): Validation of in vitro findings. Biomaterials 13, 594 (1992).

    CAS  Article  Google Scholar 

  27. 27.

    F.H. Lin, T.M. Chen, C.P. Lin, and C.J. Lee: The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Artif. Organs 23, 186 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    C.A. van Blitterswijk, S.C. Hesseling, J.J. Grote, H.K. Koerten, and K. de Groot: The biocompatibility of hydroxyapatite ceramic: A study of retrieved human middle ear implants. J. Biomed. Mater. Res. 24, 433 (1990).

    Article  Google Scholar 

  29. 29.

    R. Velu and S. Singamneni: Selective laser sintering of polymer biocomposites based on polymethyl methacrylate. J. Mater. Res. 29, 1883 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    R. Velu, B. Kamarajan, M. Ananthasubramanian, T. Ngo, and S. Singamneni: Post-process composition and biological responses of laser sintered PMMA and β-TCP composites. J. Mater. Res. 14, 1987 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National High-tech Research and Development Program (863 Program), No. 2015AA033701. Samples were gifts given by Beijing Naton Technology Group Co., Ltd., Beijing.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zi-Qing Tang or Xing Liang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, YR., Zhang, L., Chen, C. et al. The delayed degradation mechanism and mechanical properties of β-TCP filler in poly(lactide-co-glycolide)/beta-tricalcium phosphate composite suture anchors during short-time degradation in vivo. Journal of Materials Research 33, 4278–4286 (2018). https://doi.org/10.1557/jmr.2018.407

Download citation