Si-doped high-energy Li1.2Mn0.54Ni0.13Co0.13O2 cathode with improved capacity for lithium-ion batteries

Abstract

Li[Lix/3Mn2x/3M1−x]O2 (M = Ni, Mn, Co) (HE-NMC) materials, which can be expressed as a combination of trigonal LiTMO2 (TM = transition metal) and monoclinic Li2MnO3 phases, are of great interest as high capacity cathodes for lithium-ion batteries. However, structural stability prevents their commercial adoption. To address this, Si doping was applied, resulting in improved stability. Raman and differential capacity analyses suggest that silicon doping improves the structural stability during electrochemical cycling. Furthermore, the doped material exhibits a 10% higher capacity relative to the control. The superior capacity likely results from the increased lattice parameters as determined by X-ray diffraction (XRD) and the lower resistance during the first cycle found by impedance and direct current resistance (DCR) measurements. Density functional theory (DFT) predictions suggest that the observed lattice expansion is an indication of increased oxygen vacancy concentration and may be due to the Si doping.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    A. Manthiram, J.C. Knight, S.T. Myung, S.M. Oh, and Y.K. Sun: Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Adv. Energy Mater. 6, 1501010 (2016).

    Article  CAS  Google Scholar 

  2. 2.

    H. Koga, L. Croguennec, M. Ménétrier, K. Douhil, S. Belin, L. Bourgeois, E. Suard, F. Weill, and C. Delmas: Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J. Electrochem. Soc. 160, A786 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Y. Wu, C. Ma, J. Yang, Z. Li, L.F. Allard, C. Liang, and M. Chi: Probing the initiation of voltage decay in Li-rich layered cathode materials at atomic scale. J. Mater. Chem. A 3, 5385 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    P. Oh, S. Myeong, W. Cho, M.J. Lee, M. Ko, H.Y. Jeong, and J. Cho: Superior long-term energy retention and volumetric energy density for Li-rich cathode materials. Nano Lett. 14, 5965 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Li, M. Bettge, B.J. Polzin, Y. Zhu, M. Balasubramanian, and D.P. Abraham: Understanding long-term cycling performance of Li1.2Ni0.15Mn0.55Co0.1O2-graphite lithium-ion cells. J. Electrochem. Soc. 160, A3006 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    J. Zheng, P. Xu, M. Gu, J. Xiao, N.D. Browning, P. Yan, C. Wang, and J-G. Zhang: Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem. Mater. 27, 1381 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    D. Qian, B. Xu, M. Chi, and Y.S. Meng: Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys. Chem. Chem. Phys. 16, 14665 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Q-Q. Qiao, L. Qin, G-R. Li, Y-L. Wang, and X-P. Gao: Sn-stabilized Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries. J. Mater. Chem. A 3, 17627 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    M. Iftekhar, N.E. Drewett, A.R. Armstrong, D. Hesp, F. Braga, S. Ahmed, and L.J. Hardwick: Characterization of aluminum doped lithium-manganese rich composites for higher rate lithium-ion cathodes. J. Electrochem. Soc. 161, A2109 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    B. Song, C. Zhou, H. Wang, H. Liu, Z. Liu, M.O. Lai, and L. Lu: Advances in sustain stable voltage of Cr-doped Li-rich layered cathodes for lithium ion batteries. J. Electrochem. Soc. 161, A1723 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Y.X. Wang, K.H. Shang, W. He, X.P. Ai, Y.L. Cao, and H.X. Yang: Magnesium-doped Li[Li0.2Co0.13Ni0.13Mn0.54]O2 for lithium-ion battery cathode with enhanced cycling stability and rate capability. ACS Appl. Mater. Interfaces 7, 13014 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Q. Li, G. Li, C. Fu, D. Luo, J. Fan, and L. Li: K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 10330 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    L. Li, B.H. Song, Y.L. Chang, H. Xia, J.R. Yang, K.S. Lee, and L. Lu: Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J. Power Sources 283, 162 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Q. Ma, R. Li, R. Zheng, Y. Liu, H. Huo, and C. Dai: Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen. J. Power Sources 331, 112 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    C. Lu, S. Yang, H. Wu, Y. Zhang, X. Yang, and T. Liang: Enhanced electrochemical performance of Li-rich Li1.2Mn0.52Co0.08Ni0.2O2 cathode materials for Li-ion batteries by vanadium doping. Electrochim. Acta 209, 448 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    R. Yu, G. Wang, M. Liu, X. Zhang, X. Wang, H. Shu, X. Yang, and W. Huang: Mitigating voltage and capacity fading of lithium-rich layered cathodes by lanthanum doping. J. Power Sources 335, 65 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    C. Chen, T. Geng, C. Du, P. Zuo, X. Cheng, Y. Ma, and G. Yin: Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. J. Power Sources 331, 91 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    E. Zhao, X. Liu, H. Zhao, X. Xiao, and Z. Hu: Ion conducting Li2SiO3-coated lithium-rich layered oxide exhibiting high rate capability and low polarization. Chem. Commun. 51, 9093 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Z. Wang, E. Liu, L. Guo, C. Shi, C. He, J. Li, and N. Zhao: Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf. Coat. Technol. 235, 570 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    X. Zhang, I. Belharouak, L. Li, Y. Lei, J.W. Elam, A. Nie, X. Chen, R.S. Yassar, and R.L. Axelbaum: Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv. Energy Mater. 3, 1299 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    X. Yang, D. Wang, R. Yu, Y. Bai, H. Shu, L. Ge, H. Guo, Q. Wei, L. Liu, and X. Wang: Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition. J. Mater. Chem. A 2, 3899 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    E. Hu, Y. Lyu, H.L. Xin, J. Liu, L. Han, S-M. Bak, J. Bai, X. Yu, H. Li, and X.Q. Yang: Explore the effects of microstructural defects on voltage fade of Li- and Mn-rich cathodes. Nano Lett. 16, 5999 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    J. Li, R. Doig, H. Liu, G.A. Botton, and J.R. Dahn: The effect of interdiffusion on the properties of lithium-rich core–shell cathodes. J. Electrochem. Soc. 163, A2841 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    M.G. Verde, H. Liu, K.J. Carroll, L. Baggetto, G.M. Veith, and Y.S. Meng: Effect of morphology and manganese valence on the voltage fade and capacity retention of Li[Li2/12Ni3/12Mn7/12]O2. ACS Appl. Mater. Interfaces 6, 18868 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    A.M. George, P. Richet, and J.F. Stebbins: Cation dynamics and premelting in lithium metasilicate (Li2SiO3) and sodium metasilicate (Na2SiO3): A high-temperature NMR study. Am. Mineral. 83, 1277 (1998).

    CAS  Article  Google Scholar 

  26. 26.

    S-H. Na, H-S. Kim, and S-I. Moon: The effect of Si doping on the electrochemical characteristics of LiNixMnyCo(1−xy)O2. Solid State Ionics 176, 313 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    X-J. Guo, Y-X. Li, M. Zheng, J-M. Zheng, J. Li, Z-L. Gonf, and Y. Yang: Structural and electrochemical characterization of x Li[Li1/3Mn2/3]O2·(1−x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤ x ≤ 0.9) as cathode materials for lithium ion batteries. J. Power Sources 184, 414 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    R. Santhanam, P. Jones, A. Sumana, and B. Rambabu: Influence of lithium content on high rate cycleability of layered Li1+ xNi0.30Co0.30Mn0.40O2 cathodes for high power lithium-ion batteries. J. Power Sources 195, 7391 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Y-J. Huang, D-S. Gao, G-T. Lei, Z-H. Li, and G-Y. Su: Synthesis and characterization of Li(Ni1/3Co1/3Mn1/3)0.96Si0.04O1.96F0.04 as a cathode material for lithium-ion battery. Mater. Chem. Phys. 106, 354 (2007).

    CAS  Article  Google Scholar 

  30. 30.

    K. Shaju, G. Subba Rao, and B.V. Chowdari: Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim. Acta 48, 145 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    C.M. Julien and M. Massot: Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides. Mater. Sci. Eng., B 100, 69 (2003).

    Article  CAS  Google Scholar 

  32. 32.

    S.K. Martha, J. Nanda, G.M. Veith, and N.J. Dudney: Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J. Power Sources 216, 179 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    S.F. Amalraj, M. Talianker, B. Markovsky, D. Sharon, L. Burlaka, G. Shafir, E. Zinigrad, O. Haik, D. Aurbach, J. Lampert, M. Schulz-Dobrick, and A. Garsuch: Study of the lithium-rich integrated compound x Li2MnO3 (1 − x)LiMO2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells. J. Electrochem. Soc. 160, A324 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    H.Q. Pham, K-M. Nam, E-H. Hwang, Y-G. Kwon, H.M. Jung, and S-W. Song: Performance enhancement of 4.8 V Li1.2Mn0.525Ni0.175Co0.1O2 battery cathode using fluorinated linear carbonate as a high-voltage additive. J. Electrochem. Soc. 161, A2002 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    E.M. Erickson, F. Schipper, T.R. Penki, J-Y. Shin, C. Erk, F-F. Chesneau, B. Markovsky, and D. Aurbach: Review—Recent advances and remaining challenges for lithium ion battery cathodes. J. Electrochem. Soc. 164, A6341 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    H. Koga, L. Croguennec, M. Ménétrier, P. Mannessiez, F. Weill, and C. Delmas: Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. J. Power Sources 236, 250 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    R. Jung, M. Metzger, F. Maglia, C. Stinner, and H.A. Gasteiger: Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 164, A1361 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    S.R. Gowda, D.W. Dees, A.N. Jansen, and K.G. Gallagher: Examining the electrochemical impedance at low states of charge in lithium- and manganese-rich layered transition-metal oxide electrodes. J. Electrochem. Soc. 162, A1374 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    W. Mao, G. Ai, Y. Dai, Y. Fu, X. Song, H. Lopez, and V. Battaglia: Nature of the impedance at low states of charge for high-capacity, lithium and manganese-rich cathode materials. J. Electrochem. Soc. 163, A3091 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    J. Hoon Kim, S. Jun Lee, J. Moon Lee, and B. Hyung Cho: 7th International Conference on Power Electronics (IEEE, Daegu, South Korea, 2007); pp. 1173–1178.

    Google Scholar 

  41. 41.

    C. James, Y. Wu, B.W. Sheldon, and Y. Qi: The impact of oxygen vacancies on lithium vacancy formation and diffusion in Li2−xMnO3−δ. Solid State Ionics 289, 87 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    C. James, Y. Wu, B.W. Sheldon, and Y. Qi: Computational analysis of coupled anisotropic chemical expansion in Li2−xMnO3−δ. MRS Adv. 1, 1037 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    T. Das, J.D. Nicholas, B.W. Sheldon, and Y. Qi: Anisotropic chemical strain in cubic ceria due to oxygen-vacancy-induced elastic dipoles. Phys. Chem. Chem. Phys. 20, 15293 (2018).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge support from National Science Foundation under Grant Nos. DMR-1410850 and 1410946 for the collaborative GOALI research. We also thank Tengjiao Qi, Michael Balogh, and Nicholas Pieczonka for their assistance with the experiments and Jung-Hyun Kim for helpful discussions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yan Wu or Brian W. Sheldon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nation, L., Wu, Y., James, C. et al. Si-doped high-energy Li1.2Mn0.54Ni0.13Co0.13O2 cathode with improved capacity for lithium-ion batteries. Journal of Materials Research 33, 4182–4191 (2018). https://doi.org/10.1557/jmr.2018.378

Download citation