Effect of nanohydroxyapatite, antibiotic, and mucosal defensive agent on the mechanical and thermal properties of glass ionomer cements for special needs patients


Special needs patients often require specific dental treatments and modified restorative materials that reduce clinical discomfort. Starting from glass ionomer cements (GICs), some different fillers were added to improve their mechanical and clinical performances. The effect of nanohydroxyapatite, antibiotic, and mucosal defensive agent on the mechanical and thermal properties of GICs was investigated. Compressive tests, calorimetric analysis, and morphological investigation were conducted. The middle percentages of fillers increased the elastic modulus while the highest decreases are recorded for highest percentages. Filler and environment also influence the compressive strengths and toughness. The introduction of fillers led to a reduction of the enthalpy with a maximum decrease with the middle percentage. The morphological characterization showed a good dispersion of the fillers. The filler percentages should be selected with a compromise between the elastic modulus, the compressive strength, and the curing time. Obtaining new materials with good clinical and mechanical properties can represent an innovative aspect of this work with positive implication in clinical practice, mainly in uncollaborative patients in which the use of traditional protocols is problematic.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    M. Deepalakshmi, S. Poorni, R. Migliani, R. Rajamani, and S. Ramachandran: Evaluation of the antibacterial and physical properties of glass ionomer cements containing chlorhexidine and cetrimide: An in vitro study. Indian J. Dent. Res. 21, 552 (2010).

    Article  Google Scholar 

  2. 2.

    J. Frencken and W. van Amerongen: The Atraumatic Restorative Treatment Approach, Dental Caries: The Disease and its Clinical Management (Blackwell Munksgaard, Oxford, 2008); p. 427.

    Google Scholar 

  3. 3.

    M. Chieruzzi, S. Pagano, S. Moretti, R. Pinna, E. Milia, L. Torre, and S. Eramo: Nanomaterials for tissue engineering in dentistry. Nanomaterials 6, 134 (2016).

    Article  Google Scholar 

  4. 4.

    M.E. Lucas, K. Arita, and M. Nishino: Toughness, bonding and fluoride-release properties of hydroxyapatite-added glass ionomer cement. Biomaterials 24, 3787 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Weng, X. Guo, V. Chong, L. Howard, R. Gregory, and D. Xie: Synthesis and evaluation of a novel antibacterial dental resin composite with quaternary ammonium salts. J. Biomed. Sci. Eng. 4, 147 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    V. Deligeorgi, N.H.F. Wilson, and I.A. Mjor: An overview of reasons for the placement and replacement of restorations. J. Dent. Res. 77, 714 (1998).

    Google Scholar 

  7. 7.

    L. Marti, M. Lata, B. Ferraz-Santos, E. Azevedo, E. Giro, and A. Zuanon: Addition of chlorhexidine gluconate to a glass ionomer cement as study on mechanical, physcial and antibacterial properties. Braz. Dent. J. 25, 33 (2014).

    Article  Google Scholar 

  8. 8.

    A.R.F. de Castilho, C. Duque, T.D. Negrini, N.T. Sacono, A.B. de Paula, C.A.D. Costa, D.M.P. Spolidorio, and R.M. Puppin-Rontani: In vitro and in vivo investigation of the biological and mechanical behaviour of resin-modified glass-ionomer cement containing chlorhexidine. J. Dent. 41, 155 (2013).

    Article  Google Scholar 

  9. 9.

    M. Chieruzzi, S. Pagano, C. De Carolis, S. Eramo, and J.M. Kenny: Scanning electron microscopy evaluation of dental root resorption associated with granuloma. Microsc. Microanal. 21, 1264 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    S. Mittal, H. Soni, D. Sharma, K. Mittal, V. Pathania, and S. Sharma: Comparative evaluation of the antibacterial and physical properties of conventional glass ionomer cement containing chlorhexidine and antibiotics. J. Int. Soc. Prev. Community Dent. 5, 268 (2015).

    Article  Google Scholar 

  11. 11.

    S. Goenka, R. Balu, and T.S.S. Kumar: Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements. J. Mech. Behav. Biomed. Mater. 7, 69 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Y.W. Gu, A.U.J. Yap, P. Cheang, and K.A. Khor: Effects of incorporation of HA/ZrO2 into glass ionomer cement (GIC). Biomaterials 26, 713 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    R. Garcia-Contreras, R.J. Scougall-Vilchis, R. Contreras-Bulnes, H. Sakagami, R.A. Morales-Luckie, and H. Nakajima: Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement. J. Appl. Oral Sci. 23, 321 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    J.W. Nicholson, S.J. Hawkins, and J.E. Smith: The incorporation of hydroxyapatite into glass-polyalkenoate (glass-ionomer) cements—A preliminary-study. J. Mater. Sci.: Mater. Med. 4, 418 (1993).

    CAS  Google Scholar 

  15. 15.

    A.U.J. Yap, Y.S. Pek, R.A. Kumar, P. Cheang, and K.A. Khor: Experimental studies on a new bioactive material: HA ionomer cements. Biomaterials 23, 955 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    K. Arita, M.E. Lucas, and M. Nishino: The effect of adding hydroxyapatite on the flexural strength of glass ionomer cement. Dent. Mater. J. 22, 126 (2003).

    CAS  Article  Google Scholar 

  17. 17.

    M.H. Chae, Y.K. Lee, K.N. Kim, J.H. Lee, B.J. Choi, H.J. Choi, and K.T. Park: The effect of hydroxyapatite on bonding strength in light curing glass ionomer dental cementKey Engin. Mater. 309–311, 881–884 (2006).

    Article  Google Scholar 

  18. 18.

    A. Moshaverinia, S. Ansari, M. Moshaverinia, N. Roohpour, J.A. Darr, and I.U. Rehman: Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 4, 432 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    A. Moshaverinia, S. Ansari, Z. Movasaghi, R.W. Billington, J.A. Darr, and I.U. Rehman: Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dent. Mater. 24, 1381 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Mu, G. Zang, H. Sun, and C. Wang: Effect of nano-hydroxyapatite to glass ionomer cement. Hua xi kou qiang yi xue za zhi 25, 544 (2007).

    Google Scholar 

  21. 21.

    Y. Takahashi, S. Imazato, A.V. Kaneshiro, S. Ebisu, J.E. Frencken, and F.R. Tay: Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent. Mater. 22, 647 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    B.J. Sanders, R.L. Gregory, K. Moore, and D.R. Avery: Antibacterial and physical properties of resin modified glass-ionomers combined with chlorhexidine. J. Oral Rehabil. 29, 553 (2002).

    CAS  Article  Google Scholar 

  23. 23.

    C. Yesilyurt, K. Er, T. Tasdemir, K. Buruk, and D. Celik: Antibacterial activity and physical properties of glass-ionomer cements containing antibiotics. Oper. Dent. 34, 18 (2009).

    Article  Google Scholar 

  24. 24.

    S.L. Pinheiro, M.R.L. Simionato, J.C.P. Imparato, and M. Oda: Antibacterial activity of glass-ionomer cement containing antibiotics on caries lesion microorganisms. Am. J. Dent. 18, 261 (2005).

    Google Scholar 

  25. 25.

    J. Ferreira, S. Pinheiro, F. Sampaio, and V. Menezes: Use of glass ionomer cement containing antibiotics to seal off infected dentin: A randomized clinical trial. Braz. Dent. J. 24, 68 (2013).

    Article  Google Scholar 

  26. 26.

    S. Katayama, K. Nishizawa, M. Hirano, S. Yamamura, and Y. Momose: Effect of polaprezinc on heating of acetic acid-induced stomatitis in hamsters. J. Pharm. Pharmaceut. Sci. 3, 113 (2000).

    Google Scholar 

  27. 27.

    C. Farrugia and J. Camilleri: Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements—A literature review. Dent. Mater. 31, E89 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    M.G. Botelho: Inhibitory effects on selected oral bacteria of antibacterial agents incorporated in a glass ionomer cement. Caries Res. 37, 108 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    H.J. Mueller, M.S. Bapna, and P.L. Fan: Heats of reactions between dentin bonding agents and tooth components. J. Oral Rehabil. 21, 699 (1994).

    CAS  Article  Google Scholar 

  30. 30.

    L. Bjorndal and T. Larsen: Changes in the cultivable flora in deep carious lesions following a stepwise excavation procedure. Caries Res. 34, 502 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    C. Duque, T.D. Negrini, N.T. Sacono, D.M.P. Spolidorio, C.A.D. Costa, and J. Hebling: Clinical and microbiological performance of resin-modified glass-ionomer liners after incomplete dentine caries removal. Clin. Oral Invest. 13, 465 (2009).

    Article  Google Scholar 

  32. 32.

    A.S. Pinto, F.B. de Araujo, R. Franzon, M.C. Figueiredo, S. Henz, F. Garcia-Godoy, and M. Maltz: Clinical and microbiological effect of calcium hydroxide protection in indirect pulp capping in primary teeth. Am. J. Dent. 19, 382 (2006).

    Google Scholar 

  33. 33.

    C. Poggio, C.R. Arciola, S. Cepurnykh, M. Chiesa, A. Scribante, L. Selan, M. Imbriani, and L. Visai: In vitro antibacterial activity of different self-etch adhesives. Int. J. Artif. Organs 35, 487 (2012).

    Article  Google Scholar 

  34. 34.

    S. Imazato, A. Kuramoto, Y. Takahashi, S. Ebisu, and M.C. Peters: In vitro antibacterial effects of the dentin primer of Clearfil Protect Bond. Dent. Mater. 22, 527 (2006).

    CAS  Article  Google Scholar 

  35. 35.

    N. Beyth, I. Yudovin-Farber, R. Bahir, A.J. Domb, and E. Weissa: Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against streptococcus mutans. Biomaterials 27, 3995 (2006).

    CAS  Article  Google Scholar 

  36. 36.

    M.A.S. Melo, S.F.F. Guedes, H.H.K. Xu, and L.K.A. Rodrigues: Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol. 31, 459 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    K. Choudhary and B. Nandhal: Comparative evaluation of shear bond strength of nano-hydroxyapatite incorporated glass ionomer cement and conventional glass ionomer cement on dense synthetic hydroxyapatite disk: An in vitro study. Indian J. Dent. Res. 26, 170 (2015).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Stefano Pagano.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chieruzzi, M., Pagano, S., Lombardo, G. et al. Effect of nanohydroxyapatite, antibiotic, and mucosal defensive agent on the mechanical and thermal properties of glass ionomer cements for special needs patients. Journal of Materials Research 33, 638–649 (2018). https://doi.org/10.1557/jmr.2018.36

Download citation