Study of growth advantage of twinned dendrites in aluminum alloys during Bridgman solidification


The growth advantage of twinned dendrites over regular columnar ones was systematically investigated during Bridgman solidification. An experimental approach was designed and the results indicated that the strong twin growth advantage lost its efficiency in the coexisting microstructure containing both twinned and regular dendrites at a low growth rate of 10 μm/s. The twin growth advantage derives from three essential components: the lateral twin propagation perpendicular to twin plane (Rx), the propagation parallel to twin plane (Ry), and the dendrite tip growth (Rz). The lateral extension component Rx played a vital role and would be limited at a low rate. Meanwhile, the tip undercooling of the twinned dendrite was estimated based on its plate-like growth morphology. Furthermore, the competitive growth between twinned dendrites was investigated in different feathery grains. When the included angle between twin planes was relatively large, the lateral twin propagation would keep down the in-plane twin propagation.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9


  1. 1.

    T. Haxhimali, A. Karma, F. Gonzales, and M. Rappaz: Orientation selection in dendritic evolution. Nat. Mater. 5, 660 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    M.A. Salgado-Ordorica and M. Rappaz: Twinned dendrite growth in binary aluminum alloys. Acta Mater. 56, 5708 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    G. Kurtuldu, P. Jarry, and M. Rappaz: Influence of Cr on the nucleation of primary Al and formation of twinned dendrites in Al–Zn–Cr alloys: Can icosahedral solid clusters play a role?Acta Mater. 61, 7098 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    L. Yang, S. Li, X. Chang, H. Zhong, and H. Fu: Twinned dendrite growth during Bridgman solidification. Acta Mater. 97, 269 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    A.K. Srivastava and S. Ranganathan: Microstructural characterization of rapidly solidified Al–Fe–Si, Al–V–Si, and Al–Fe–V–Si alloys. J. Mater. Res. 16, 2103 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    X. Li, Q. Li, Z. Ren, Y. Fautrelle, X. Lu, A. Gagnoud, Y. Zhang, C. Esling, H. Wang, and Y. Dai: Investigation on the formation mechanism of irregular dendrite during directional solidification of Al–Cu alloys under a high magnetic field. J. Alloys Compd. 581, 769 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    A.N. Turchin, M. Zuijderwijk, J. Pool, D.G. Eskin, and L. Katgerman: Feathery grain growth during solidification under forced flow conditions. Acta Mater. 55, 3795 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    S. Henry, P. Jarry, and M. Rappaz: {110} dendrite growth in aluminum feathery grains. Metall. Mater. Trans. A 29A, 2807 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    M.A. Salgado Ordorica: Characterization and Modeling of Twinned Dendrite Growth (Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2009).

    Google Scholar 

  10. 10.

    L. Yang, S. Li, J. Guo, K. Fan, Y. Li, H. Zhong, and H. Fu: Growth stability of twinned dendrites in directionally solidified Al–4.5 wt% Cu alloy. Mater. Lett. 214, 205 (2017).

    Article  Google Scholar 

  11. 11.

    S. Henry, G.U. Gruen, and M. Rappaz: Influence of convection on feathery grain formation in aluminum alloys. Metall. Mater. Trans. A 35A, 2495 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    J.A. Eady and L.M. Hogan: Some crystallographic observations of growth-twinned dendrites in aluminum. J. Cryst. Growth 23, 129 (1974).

    CAS  Article  Google Scholar 

  13. 13.

    H.J. Wood, J.D. Hunt, and P.V. Evans: Modelling the growth of feather crystals. Acta Mater. 45, 569 (1997).

    CAS  Article  Google Scholar 

  14. 14.

    M.A. Salgado-Ordorica, P. Burdet, M. Cantoni, and M. Rappaz: Study of the twinned dendrite tip shape II: Experimental assessment. Acta Mater. 59, 5085 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    M.A. Salgado-Ordorica, J.L. Desbiolles, and M. Rappaz: Study of the twinned dendrite tip shape I: Phase-field modeling. Acta Mater. 59, 5074 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    D. Walton and B. Chalmers: The origin of the preferred orientation in the columnar zone of ingots. Trans. Metall. Soc. AIME 215, 447 (1959).

    CAS  Google Scholar 

  17. 17.

    C-A. Gandin and M. Rappaz: A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metall. Mater. 42, 2233 (1994).

    CAS  Article  Google Scholar 

  18. 18.

    M. Rappaz and C-A. Gandin: Probabilistic modelling of microstructure formation in solidification processes. Acta Metall. Mater. 41, 345 (1993).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Zhou, A. Volek, and N. Green: Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy. Acta Mater. 56, 2631 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    J. Li, Z. Wang, Y. Wang, and J. Wang: Phase-field study of competitive dendritic growth of converging grains during directional solidification. Acta Mater. 60, 1478 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    K. Han, J. Hirth, and J. Embury: Modeling the formation of twins and stacking faults in the Ag–Cu system. Acta Mater. 49, 1537 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    J. Hirth and R. Pond: Compatibility and accommodation in displacive phase transformations. Prog. Mater. Sci. 56, 586 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    W. Kurz, B. Giovanola, and R. Trivedi: Theory of microstructural development during rapid solidification. Acta Metall. 34, 823 (1986).

    CAS  Article  Google Scholar 

  24. 24.

    W. Kurz and D.J. Fisher: Fundamentals of Solidification, 4th revised ed. (Trans Tech Publication, Switzerland, 1998).

    Google Scholar 

  25. 25.

    M.A. Salgado-Ordorica, J. Valloton, and M. Rappaz: Study of twinned dendrite growth stability. Scr. Mater. 61, 367 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    M. Aziz: Model for solute redistribution during rapid solidification. J. Appl. Phys. 53, 1158 (1982).

    CAS  Article  Google Scholar 

  27. 27.

    X.B. Meng, Q. Lu, X.L. Zhang, J.G. Li, Z.Q. Chen, Y.H. Wang, Y.Z. Zhou, T. Jin, X.F. Sun, and Z.Q. Hu: Mechanism of competitive growth during directional solidification of a nickel-base superalloy in a three-dimensional reference frame. Acta Mater. 60, 3965 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    S. Gill and W. Kurz: Rapidly solidified Al–Cu alloys—II. Calculation of the microstructure selection map. Acta Metall. Mater. 43, 139 (1995).

    CAS  Google Scholar 

Download references


The authors are grateful for financial support from the Natural Science Foundation of China (No. 51474174) and the Foundation of State Key Lab of Solidification processing (101-QP-2014 and 133-QP-2015).

Author information



Corresponding author

Correspondence to Shuangming Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Li, S., Li, Y. et al. Study of growth advantage of twinned dendrites in aluminum alloys during Bridgman solidification. Journal of Materials Research 34, 240–250 (2019).

Download citation