Mechanical characterization of a bonded tailorable coefficient of thermal expansion lattice with near optimal performance


Low coefficient of thermal expansion (CTE) lattices occupy a unique area of property space. With such a system, it is possible to achieve relatively high stiffness, with opportunities to combine low thermal expansion and with a range of advantageous properties. Possibilities include combinations that are not rivaled by any bulk material, e.g., low CTE and high melting temperature, and low CTE with low conductivity. One design in particular, the UCSB Lattice, has biaxial stiffness very near theoretical upper bounds when the joints are pinned. Bonded lattices are found to inherit the near optimal performance of the parent pin-jointed design. Despite near optimal performance, however, stiffnesses and strengths are limited to a few percent of the relative property of the constituents. The local deformations necessary to accommodate low net CTE are similar to those of auxetic lattices, with similar behavior, having a low, zero, or negative tunable Poisson’s ratio. An investigative framework, including experiments, finite element, and analytical formulas, is used to construct these assessments.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    C.A. Steeves, S.L. dos Santos e Lucato, M. He, E. Antinucci, J.W. Hutchinson, and A.G. Evans: Concepts for structurally robust materials that combine low thermal expansion with high stiffness. J. Mech. Phys. Solids 55, 1803–1822 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    F. Bridges, T. Keiber, P. Juhas, S.J.L. Billinge, L. Sutton, J. Wilde, and G.R. Kowach: Local vibrations and negative thermal expansion in ZrW2O8. Phys. Rev. Lett. 112, 045505 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    J. Berger, C. Mercer, R.M. McMeeking, and A.G. Evans: The design of bonded bimaterial lattices that combine low thermal expansion with high stiffness. J. Am. Ceram. Soc. 94, s42–s54 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    J. Lehman and R. Lakes: Stiff, strong zero thermal expansion lattices via the Poisson effect. J. Mater. Res. 28, 2499–2508 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    C.S. Ha, E. Hestekin, J. Li, M.E. Plesha, and R.S. Lakes: Controllable thermal expansion of large magnitude in chiral negative Poisson’s ratio lattices. Phys. Status Solidi 252, 1431–1434 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    R.S. Lakes: Cellular solid structures with unbounded thermal expansion. J. Mater. Sci. Lett. 15, 475–477 (1996).

    CAS  Article  Google Scholar 

  7. 7.

    G. Jefferson, T.A. Parthasarathy, and R.J. Kerans: Tailorable thermal expansion hybrid structures. Int. J. Solids Struct. 46, 2372–2387 (2009).

    Article  Google Scholar 

  8. 8.

    O. Sigmund and S. Torquato: Composites with extremal thermal expansion coefficients. Appl. Phys. Lett. 69, 3203–3205 (1996).

    CAS  Article  Google Scholar 

  9. 9.

    M.M. Toropova and C.A. Steeves: Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures. Acta Astronaut. 113, 132–141 (2015).

    Article  Google Scholar 

  10. 10.

    N.M.A. Palumbo, C.W. Smith, W. Miller, and K.E. Evans: Near-zero thermal expansivity 2-D lattice structures: Performance in terms of mass and mechanical properties. Acta Mater. 59, 2392–2403 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    J. Lehman and R.S. Lakes: Stiff, strong, zero thermal expansion lattices via material hierarchy. Compos. Struct. 107, 654–663 (2014).

    Article  Google Scholar 

  12. 12.

    K. Wei, H. Chen, Y. Pei, and D. Fang: Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit. J. Mech. Phys. Solids 86, 173–191 (2016).

    Article  Google Scholar 

  13. 13.

    J.B. Hopkins, K.J. Lange, and C.M. Spadaccini: Designing microstructural architectures with thermally actuated properties using freedom, actuation, and constraint topologies. J. Mech. Des. 135, 061004 (2013).

    Article  Google Scholar 

  14. 14.

    R.K. Rhein, M.D. Novak, C.G. Levi, and T.M. Pollock: Bimetallic low thermal-expansion panels of Co-base and silicide-coated Nb-base alloys for high-temperature structural applications. Mater. Sci. Eng., A 528, 3973–3980 (2011).

    Article  Google Scholar 

  15. 15.

    C.A. Steeves, C. Mercer, E. Antinucci, M.Y. He, and A.G. Evans: Experimental investigation of the thermal properties of tailored expansion lattices. Int. J. Mech. Mater. Des. 5, 195–202 (2009).

    Article  Google Scholar 

  16. 16.

    C.A. Steeves and A.G. Evans: Optimization of thermal protection systems utilizing sandwich structures with low coefficient of thermal expansion lattice hot faces. J. Am. Ceram. Soc. 94, s55–s61 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    C.A. Steeves and M.M. Toropova: Thermal actuation through bimaterial lattices. In Proceedings of the ASME 2015 Conference on Smart Materials, Adaptive Structures & Intelligent Systems (ASME, Colorado Springs, 2015); pp. 1–7.

    Google Scholar 

  18. 18.

    M. Toropova and C. Steeves: Bimaterial lattices with anisotropic thermal expansion. J. Mech. Mater. Struct. 9, 227–244 (2014).

    Article  Google Scholar 

  19. 19.

    E. Gdoutos, A.A. Shapiro, and C. Daraio: Thin and thermally stable periodic metastructures. Exp. Mech. 53, 1735–1742 (2013).

    Article  Google Scholar 

  20. 20.

    J. Bauer, L.R. Meza, T.A. Schaedler, R. Schwaiger, X. Zheng, and L. Valdevit: Nanolattices: An emerging class of mechanical metamaterials. Adv. Mater. 1701850, 1–26 (2017).

    Google Scholar 

  21. 21.

    Simulia, ABAQUS CAE (2015). Available at:

  22. 22.

    M. Danielsson, D.M. Parks, and M.C. Boyce: Three-dimensional micromechanical modeling of voided polymeric materials. J. Mech. Phys. Solids 50, 351–379 (2002).

    CAS  Article  Google Scholar 

  23. 23.

    L.V. Gibiansky and S. Torquato: Thermal expansion of isotropic multiphase composites and polycrystals. J. Mech. Phys. Solids 45, 1223–1252 (1997).

    CAS  Article  Google Scholar 

  24. 24.

    T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener: An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 1–6 (2014).

    Article  Google Scholar 

  25. 25.

    O. Sigmund and S. Torquato: Design of materials with extreme thermal expansion using a three-phase topology. J. Mech. Phys. Solids 45, 1037–1067 (1997).

    CAS  Article  Google Scholar 

  26. 26.

    A. Spadoni and M. Ruzzene: Elasto-static micropolar behavior of a chiral auxetic lattice. J. Mech. Phys. Solids 60, 156–171 (2012).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jonathan B. Berger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berger, J.B., McMeeking, R.M. Mechanical characterization of a bonded tailorable coefficient of thermal expansion lattice with near optimal performance. Journal of Materials Research 33, 3383–3397 (2018).

Download citation