Investigation of hydrogen embrittlement in 12Cr2Mo1R(H) steel

Abstract

The hydrogen embrittlement of 12Cr2Mo1R(H) steel at different strain rates were investigated after hydrogen precharging for 4 h in a 0.5 M H2SO4 solution with 2 g/L ammonium thiocyanate. Results showed that the embrittlement index increased and gradually reached a relative stable value of about 20% at the strain rate of 5 × 10−5 s−1 with the decrease of strain rates. SEM images depicted small and deep flakes at high strain rates, while flakes grew larger at slow strain rates. Most hydrogen-induced cracks (HICs) were transgranular fracture through lath grain of bainitic ferrite. High strain field surrounds the crack tips, which makes the crack tips of two close and parallel cracks deflect toward each another and even form crack coalescence. The electron backscatter diffraction technique was used to investigate the effects of grain boundaries, recrystallization fraction, kernel average misorientation map, texture component, and coincidence site lattice boundaries on the HIC propagation. High densities of dislocations and strain concentrations were found around the cracks, where grains are highly sensitive to HIC.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

References

  1. 1.

    M.A. Mohtadi-Bonab, R. Karimdadashi, M. Eskandari, and J.A. Szpunar: Hydrogen-induced cracking assessment in pipeline steels through permeation and crystallographic texture measurements. J. Mater. Eng. Perform. 25, 1781 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    J. Kittel, V. Smanio, M. Fregonese, L. Garnier, and X. Lefebvre: Hydrogen induced cracking (HIC) testing of low alloy steel in sour environment: Impact of time of exposure on the extent of damage. Corros. Sci. 52, 1386 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    G. Magudeeswaran, V. Balasubramaniarr, G. Madhusudhan Reddy, and T.S. Balasubramanian: Effect of welding processes and consumables on tensile and impact properties of high strength quenched and tempered steel joints. J. Iron Steel Res. Int. 15, 87 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    J. Yang, F. Huang, Z. Guo, Y. Rong, and N. Chen: Effect of retained austenite on the hydrogen embrittlement of a medium carbon quenching and partitioning steel with refined microstructure. Mater. Sci. Eng., A 665, 76 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    C.L. Fu and G.S. Painter: First principles investigation of hydrogen embrittlement in FeAl. J. Mater. Res. 6, 719 (1991).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Takahashi, H. Kondo, R. Asano, S. Arai, K. Higuchi, Y. Yamamoto, S. Muto, and N. Tanaka: Direct evaluation of grain boundary hydrogen embrittlement: A micro-mechanical approach. Mater. Sci. Eng., A 661, 211 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    G.M. Bond, I.M. Robertson, and H.K. Birnbaum: Effects of hydrogen on deformation and fracture processes in high-purity aluminium. Acta Metall. 36, 2193 (1988).

    CAS  Article  Google Scholar 

  8. 8.

    M. Hassan Sk, R.A. Overfelt, and A.M. Abdullah: Effects of microstructures on hydrogen induced cracking of electrochemically hydrogenated double notched tensile sample of 4340 steel. Mater. Sci. Eng., A 659, 242 (2016).

    Article  Google Scholar 

  9. 9.

    A. Griesche, E. Dabah, T. Kannengiesser, N. Kardjilov, A. Hilger, and I. Manke: Three-dimensional imaging of hydrogen blister in iron with neutron topography. Acta Mater. 78, 14 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    K. Takai, H. Shoda, H. Suzuki, and M. Nagumo: Lattice defects dominating hydrogen-related failure of metals. Acta Mater. 56, 5158 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    T. Depover, E. Van den Eeckhout, and K. Verbeken: The impact of hydrogen on the ductility loss of bainitic Fe–C alloys. Mater. Sci. Technol. 32, 1625 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    T. Michler, C.S. Marchi, K. Berreth, J. Naumann, R.K. Mishra, and R.C. Kubic: Microstructure, deformation mechanisms and influence of hydrogen on tensile properties of the Co based super alloy DIN 2.4711/UNSN30003. Mater. Sci. Eng., A 662, 36 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    M. Koyama, S. Okazaki, T. Sawaguchi, and K. Tsuzaki: Hydrogen embrittlement susceptibility of Fe–Mn binary alloys with high Mn content: Effects of stable and metastable ε-martensite, and Mn concentration. Metall. Mater. Trans. A 47, 2656 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    T. Depover, E. Wallaert, and K. Verbeken: On the synergy of diffusible hydrogen content and hydrogen diffusivity in the mechanical degradation of laboratory cast Fe–C alloys. Mater. Sci. Eng., A 664, 195 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    D.P. Dunne, D. Hejazi, A.A. Saleh, A.J. Haq, A. Calka, and E.V. Pereloma: Investigation of the effect of electrolytic hydrogen charging of X70 steel: I. The effect of microstructure on hydrogen-induced cold cracking and blistering. Int. J. Hydrogen Energy 41, 12411 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    W. Hui, Y. Zhang, X. Zhao, C. Shao, K. Wang, W. Sun, and T. Yu: Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts. Mater. Sci. Eng., A 662, 528 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    M.A. Arafin and J.A. Szpunar: A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies. Corros. Sci. 51, 119 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    V.Y. Gertsman and S.M. Bruemmer: Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys. Acta Mater. 49, 1589 (2001).

    CAS  Article  Google Scholar 

  19. 19.

    M.A. Mohtadi-Bonab, M. Eskandari, K.M.M. Rahman, R. Ouellet, and J.A. Szpunar: An extensive study of hydrogen-induced cracking susceptibility in an API X60 sour service pipeline steel. Int. J. Hydrogen Energy 41, 4185 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    D. Pérez Escobar, C. Minambres, L. Duprez, K. Verbeken, and M. Verhaege: Internal and surface damage of multiphase steels and pure iron after electrochemical hydrogen charging. Corros. Sci. 53, 3166 (2011).

    Article  Google Scholar 

  21. 21.

    X. Zhu, K. Zhang, W. Li, and X. Jin: Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels. Mater. Sci. Eng., A 658, 400 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    T. Depover, D. Pérez Escobar, E. Wallaert, Z. Zermout, and K. Verbeken: Effect of hydrogen charging on the mechanical properties of advanced high strength steels. Int. J. Hydrogen Energy 39, 4647 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    A.A. Saleh, D. Hejazi, A.A. Gazder, D.P. Dunne, and E.V. Pereloma: Investigation of the effect of electrolytic hydrogen charging of X70 steel: II. Microstructural and crystallographic analyses of the formation of hydrogen induced cracks and blisters. Int. J. Hydrogen Energy 41, 12424 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    A. Laureys, T. Depover, R. Petrov, and K. Verbeken: Characterization of hydrogen induced cracking in TRIP-assisted steels. Int. J. Hydrogen Energy 40, 16901 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    D. Xie, S. Li, L. Meng, Z. Wang, P. Gumbsch, J. Sun, E. Ma, L. Ju, and Z. Shan: Hydrogenated vacancies lock dislocations in aluminium. Nat. Commun. 7, 13341 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    A. Laureys, T. Depover, R. Petrov, and K. Verbeken: Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD. Mater. Charact. 112, 169 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    S. Jothi, S.V. Merzlikin, T.N. Croft, J. Andersson, and S.G.R. Brown: An investigation of micro-mechanisms in hydrogen induced cracking in nickel-based superalloy 718. J. Alloys Compd. 664, 664 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    D.C. Crawford and G.S. Was: The role of grain boundary misorientation in intergranular cracking of Ni–16Cr–9Fe in 360 °C argon and high-purity water. Metall. Trans. A 23, 1195 (1992).

    Article  Google Scholar 

  29. 29.

    J. Lu and J.A. Szpunar: Microstructural model of intergranular fracture during tensile tests. J. Mater. Process. Technol. 60, 305 (1996).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors would like to thank the National Natural Science Foundation of China (51201144) and Science & Technology Support Program of Sichuan Province (2016GZ0271) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kun Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Bian, B., Zhang, K. et al. Investigation of hydrogen embrittlement in 12Cr2Mo1R(H) steel. Journal of Materials Research 33, 3501–3511 (2018). https://doi.org/10.1557/jmr.2018.319

Download citation