Abstract
Cell morphology and relative density (ρrel) are two crucial intrinsic parameters controlling the mechanical properties of metal foams (MFs) and directly depend on their structure (closed/open-cell) and composition (affecting processing parameters). Here, we report on compressive studies of MFs of aluminum (Al) and 7075-T6 alloy processed via a customized route at strain rate, έ = 0.002 and 2.0 s−1. In both sets of MFs, the strength and apparent elastic modulus (E) monotonically increased with ρrel at both έ. At έ = 2.0 s−1, an increase in cell size (Cs) enhanced the strength of both sets of MFs, while at έ = 0.002 s−1, only the alloy foams showed strength increment. The densification strain (εd) of Al foams at έ = 0.002 s−1 monotonically decreased with increasing ρrel, whereas the alloy foams collapsed before the onset of densification. None of the MFs showed any particular trend of εd at έ = 2.0 s−1. The studies conclude that the mechanical properties of MFs with similar morphology, foam parameters, and processing route depend on έ and Cs. Absorption energy (W) and absorption efficiency (Im) of the two sets of MFs were also compared.
This is a preview of subscription content, access via your institution.






References
- 1.
L. Ma and Z. Song: Cellular structure control of aluminium foams during foaming process of aluminium melt. Scripta Mater. 39, 1523 (1998).
- 2.
H. Kanahashi, T. Mukai, T.G. Nieh, T. Aizawa, and K. Higashi: Effect of cell size on the dynamic compressive properties of open-celled aluminum foams. Mater. Trans., JIM 43, 2548 (2002).
- 3.
E. Koza, M. Leonowicz, S. Wojciechowski, and F. Simancik: Compressive strength of aluminium foams. Mater. Lett. 58, 132 (2003).
- 4.
T.G. Nieh, K. Higashi, and J. Wadsworth: Effect of cell morphology on the compressive properties of open-cell aluminum foams. Mater. Sci. Eng., A 283, 105 (2000).
- 5.
C.Y. Zhao: Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transfer 55, 3618 (2012).
- 6.
B. Jiang, N.Q. Zhao, C.S. Shi, and J.J. Li: Processing of open cell aluminum foams with tailored porous morphology. Scripta Mater. 53, 781 (2005).
- 7.
A. Paul and U. Ramamurty: Strain rate sensitivity of a closed-cell aluminum foam. Mater. Sci. Eng., A 281, 1 (2000).
- 8.
X. Cao, Z. Wang, H. Ma, L. Zhao, and G. Yang: Effects of cell size on compressive properties of aluminum foam. Trans. Nonferrous Met. Soc. China 16, 351 (2006).
- 9.
N. Michailidis, F. Stergioudi, A. Tsouknidas, and E. Pavlidou: Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material. Mater. Sci. Eng., A 528, 1662 (2011).
- 10.
H. Bafti and A. Habibolahzadeh: Compressive properties of aluminum foam produced by powder-carbamide spacer route. Mater. Des. 52, 404 (2013).
- 11.
M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley: Metal Foams: A Design Guide (Butterworth-Heinemann, Waltham, MA, 2000).
- 12.
J. Banhart: Manufacturing routes for metallic foams. JOM 52, 22 (2000).
- 13.
C.S. Marchi and A. Mortensen: Deformation of open-cell aluminum foam. Acta Mater. 49, 3959 (2001).
- 14.
R.A. Palmer, K. Gao, T.M. Doan, L. Green, and G. Cavallaro: Pressure infiltrated syntactic foams-process development and mechanical properties. Mater. Sci. Eng., A 464, 85 (2007).
- 15.
J.F. Despois, A. Marmottant, L. Salvo, and A. Mortensen: Influence of the infiltration pressure on the structure and properties of replicated aluminium foams. Mater. Sci. Eng., A 462, 68 (2007).
- 16.
A. Jinnapat and A. Kennedy: The manufacture and characterization of aluminium foams made by investment casting using dissolvable spherical sodium chloride bead preforms. Metals 1, 49 (2011).
- 17.
W. Jiang, Z. Fan, D. Liu, X. Dong, H. Wu, and H.S. Wang: Effects of process parameters on internal quality of castings during novel casting. Mater. Manuf. Processes 28, 48 (2012).
- 18.
J. Banhart: Light-metal foams—History of innovation and technological challenges. Adv. Eng. Mater. 15, 82 (2013).
- 19.
S. Kim and C. Lee: A review on manufacturing and application of open-cell metal foam. Procedia Mater. Sci. 4, 305 (2014).
- 20.
B. Soni and S. Biswas: Mass-scale processing of open-cell metallic foams by pressurized casting method. J. Porous Mater. 24, 29 (2016).
- 21.
B. Soni and S. Biswas: Evaluation of mechanical properties under quasi-static compression of open-cell foams of 6061-T6 Al alloy fabricated by pressurized salt infiltration casting method. Mater. Charact. 130, 198 (2017).
- 22.
L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, 2000).
- 23.
R. Surace, L.A.C. De Filippis, D.A. Ludovico, and G. Boghetich: Influence of processing parameters on aluminium foam produced by space holder technique. Mater. Des. 30, 1878 (2009).
- 24.
Standard test methods of compression testing of metallic materials at room temperature, ASTM E9–09, 2009.
- 25.
L.E. Murr, K.N. Amato, S.J. Li, Y.X. Tian, X.Y. Cheng, S.M. Gaytan, E. Martineza, P.W. Shindo, F. Medina, and R.B. Wicker: Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 4, 1396 (2011).
- 26.
N. Mahmutyazicioglu, O. Albayrak, M. Ipekoglu, and S. Altintas: Effects of alumina (Al2O3) addition on the cell structure and mechanical properties of 6061 foams. J. Mater. Res. 28, 2509 (2013).
- 27.
Z. Wang, J. Shen, G. Lu, and L. Zhao: Compressive behavior of closed-cell aluminum alloy foams at medium strain rates. Mater. Sci. Eng., A 528, 2326 (2011).
- 28.
P. Schüler, S.F. Fischer, A. Bührig-Polaczek, and C. Fleck: Deformation and failure behavior of open cell Al foams under quasistatic and impact loading. Mater. Sci. Eng., A 587, 250 (2013).
- 29.
Q.M. Li, I. Magkiriadis, and J.J. Harrigan: Compressive strain at the onset of densification of cellular solids. J. Cell. Plast. 42, 371 (2006).
- 30.
D. Ruan, G. Lu, F.L. Chen, and E. Siores: Compressive behaviour of aluminium foams at low and medium strain rates. Compos. Struct. 57, 331 (2002).
- 31.
C.M. Cady, G.T. Gray, III, C. Liu, M.L. Lovato, and T. Mukai: Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature. Mater. Sci. Eng., A 525, 1 (2009).
- 32.
S.W. Youn and C.G. Kang: Evaluation of mechanical properties of porous 6061 alloys fabricated by the powder compression and induction heating process. Metall. Mater. Trans. A 35, 2419 (2004).
- 33.
M. Peroni, G. Solomos, and V. Pizzinato: Impact behaviour testing of aluminium foam. Int. J. Impact Eng. 53, 74 (2013).
- 34.
C.R. Calladine and R.W. English: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure. Int. J. Mech. Sci. 26, 689 (1984).
- 35.
A.E. Simone and L.J. Gibson: Effects of solid distribution on the stiffness and strength of metallic foams. Acta Mater. 46, 2139 (1998).
- 36.
C. Chen, T.J. Lu, and N.A. Fleck: Effect of imperfections on the yielding of two-dimensional foams. J. Mech. Phys. Solid. 47, 2235 (1999).
- 37.
F. Han, H. Cheng, Z. Li, and Q. Wang: The strain rate effect of an open cell aluminum foam. Metall. Mater. Trans. A 36, 645 (2005).
- 38.
B. Jiang, Z. Wang, and N. Zhao: Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scripta Mater. 56, 169 (2007).
- 39.
F. Campana and D. Pilone: Effect of wall microstructure and morphometric parameters on the crush behaviour of Al alloy foams. Mater. Sci. Eng., A 479, 58 (2008).
- 40.
J.W. Klintworth and W.J. Stronge: Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs. Int. J. Mech. Sci. 30, 273 (1988).
- 41.
X. Wang and G. Zhou: The static compressive behavior of aluminum foam. Rev. Adv. Mater. Sci. 33, 316 (2013).
- 42.
B. Song, W. Chen, T. Yanagita, and D.J. Frew: Confinement effects on the dynamic compressive properties of an epoxy syntactic foam. Compos. Struct. 67, 279 (2005).
- 43.
E.M. Wouterson, F.Y.C. Boey, X. Hu, and S.C. Wong: Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures. Compos. Sci. Technol. 65, 1840 (2005).
- 44.
Z. Esen and S. Bor: Processing of titanium foams using magnesium spacer particles. Scripta Mater. 56, 341 (2007).
- 45.
M.C. Saha, M.E. Kabir, and S. Jeelani: Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Mater. Sci. Eng., A 479, 213 (2008).
- 46.
N. Michailidis, F. Stergioudi, and A. Tsouknidas: Deformation and energy absorption properties of powder-metallurgy produced Al foams. Mater. Sci. Eng., A 528, 7222 (2011).
- 47.
S. Chang, Y. Huang, S. Yang, S. Kuo, and M. Lee: In vitro properties of gellan gum sponge as the dental filling to maintain alveolar space. Carbohydr. Polym. 88, 684 (2012).
- 48.
B. Koohbor, S. Mallon, A. Kidane, and W. Lu: The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading. Polym. Test. 44, 112 (2015).
- 49.
J. Zhou, P. Shrotriya, and W.O. Soboyejo: Mechanisms and mechanics of compressive deformation in open-cell Al foams. Mech. Mater. 36, 781 (2004).
- 50.
A. Paul and U. Ramamurty: Variability in mechanical properties of a metal foam. Acta Mater. 52, 869 (2004).
- 51.
R.E. Raj, V. Parameswaran, and B.S.S. Daniel: Comparison of quasi-static and dynamic compression behavior of closed-cell aluminum foam. Mater. Sci. Eng., A 526, 11 (2009).
- 52.
D.P. Mondal, M.D. Goyal, and S. Das: Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam. Mater. Sci. Eng., A 507, 102 (2009).
- 53.
F. Yi, Z. Zhu, F. Zu, S. Hu, and P. Yi: Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams. Mater. Charact. 47, 417 (2001).
ACKNOWLEDGMENT
This work has been financially supported by the Department of Science and Technology, Government of India (Project No. SR/FTP/PS-214/2011).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Soni, B., Biswas, S. Effects of cell parameters at low strain rates on the mechanical properties of metallic foams of Al and 7075-T6 alloy processed by pressurized infiltration casting method. Journal of Materials Research 33, 3418–3429 (2018). https://doi.org/10.1557/jmr.2018.281
Received:
Accepted:
Published:
Issue Date: