Effects of cell parameters at low strain rates on the mechanical properties of metallic foams of Al and 7075-T6 alloy processed by pressurized infiltration casting method

Abstract

Cell morphology and relative density (ρrel) are two crucial intrinsic parameters controlling the mechanical properties of metal foams (MFs) and directly depend on their structure (closed/open-cell) and composition (affecting processing parameters). Here, we report on compressive studies of MFs of aluminum (Al) and 7075-T6 alloy processed via a customized route at strain rate, έ = 0.002 and 2.0 s−1. In both sets of MFs, the strength and apparent elastic modulus (E) monotonically increased with ρrel at both έ. At έ = 2.0 s−1, an increase in cell size (Cs) enhanced the strength of both sets of MFs, while at έ = 0.002 s−1, only the alloy foams showed strength increment. The densification strain (εd) of Al foams at έ = 0.002 s−1 monotonically decreased with increasing ρrel, whereas the alloy foams collapsed before the onset of densification. None of the MFs showed any particular trend of εd at έ = 2.0 s−1. The studies conclude that the mechanical properties of MFs with similar morphology, foam parameters, and processing route depend on έ and Cs. Absorption energy (W) and absorption efficiency (Im) of the two sets of MFs were also compared.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

References

  1. 1.

    L. Ma and Z. Song: Cellular structure control of aluminium foams during foaming process of aluminium melt. Scripta Mater. 39, 1523 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    H. Kanahashi, T. Mukai, T.G. Nieh, T. Aizawa, and K. Higashi: Effect of cell size on the dynamic compressive properties of open-celled aluminum foams. Mater. Trans., JIM 43, 2548 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    E. Koza, M. Leonowicz, S. Wojciechowski, and F. Simancik: Compressive strength of aluminium foams. Mater. Lett. 58, 132 (2003).

    Article  CAS  Google Scholar 

  4. 4.

    T.G. Nieh, K. Higashi, and J. Wadsworth: Effect of cell morphology on the compressive properties of open-cell aluminum foams. Mater. Sci. Eng., A 283, 105 (2000).

    Article  Google Scholar 

  5. 5.

    C.Y. Zhao: Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transfer 55, 3618 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    B. Jiang, N.Q. Zhao, C.S. Shi, and J.J. Li: Processing of open cell aluminum foams with tailored porous morphology. Scripta Mater. 53, 781 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    A. Paul and U. Ramamurty: Strain rate sensitivity of a closed-cell aluminum foam. Mater. Sci. Eng., A 281, 1 (2000).

    Article  Google Scholar 

  8. 8.

    X. Cao, Z. Wang, H. Ma, L. Zhao, and G. Yang: Effects of cell size on compressive properties of aluminum foam. Trans. Nonferrous Met. Soc. China 16, 351 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    N. Michailidis, F. Stergioudi, A. Tsouknidas, and E. Pavlidou: Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material. Mater. Sci. Eng., A 528, 1662 (2011).

    Article  CAS  Google Scholar 

  10. 10.

    H. Bafti and A. Habibolahzadeh: Compressive properties of aluminum foam produced by powder-carbamide spacer route. Mater. Des. 52, 404 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley: Metal Foams: A Design Guide (Butterworth-Heinemann, Waltham, MA, 2000).

    Google Scholar 

  12. 12.

    J. Banhart: Manufacturing routes for metallic foams. JOM 52, 22 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    C.S. Marchi and A. Mortensen: Deformation of open-cell aluminum foam. Acta Mater. 49, 3959 (2001).

    Article  Google Scholar 

  14. 14.

    R.A. Palmer, K. Gao, T.M. Doan, L. Green, and G. Cavallaro: Pressure infiltrated syntactic foams-process development and mechanical properties. Mater. Sci. Eng., A 464, 85 (2007).

    Article  CAS  Google Scholar 

  15. 15.

    J.F. Despois, A. Marmottant, L. Salvo, and A. Mortensen: Influence of the infiltration pressure on the structure and properties of replicated aluminium foams. Mater. Sci. Eng., A 462, 68 (2007).

    Article  CAS  Google Scholar 

  16. 16.

    A. Jinnapat and A. Kennedy: The manufacture and characterization of aluminium foams made by investment casting using dissolvable spherical sodium chloride bead preforms. Metals 1, 49 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    W. Jiang, Z. Fan, D. Liu, X. Dong, H. Wu, and H.S. Wang: Effects of process parameters on internal quality of castings during novel casting. Mater. Manuf. Processes 28, 48 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    J. Banhart: Light-metal foams—History of innovation and technological challenges. Adv. Eng. Mater. 15, 82 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    S. Kim and C. Lee: A review on manufacturing and application of open-cell metal foam. Procedia Mater. Sci. 4, 305 (2014).

    Article  CAS  Google Scholar 

  20. 20.

    B. Soni and S. Biswas: Mass-scale processing of open-cell metallic foams by pressurized casting method. J. Porous Mater. 24, 29 (2016).

    Article  CAS  Google Scholar 

  21. 21.

    B. Soni and S. Biswas: Evaluation of mechanical properties under quasi-static compression of open-cell foams of 6061-T6 Al alloy fabricated by pressurized salt infiltration casting method. Mater. Charact. 130, 198 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  23. 23.

    R. Surace, L.A.C. De Filippis, D.A. Ludovico, and G. Boghetich: Influence of processing parameters on aluminium foam produced by space holder technique. Mater. Des. 30, 1878 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Standard test methods of compression testing of metallic materials at room temperature, ASTM E9–09, 2009.

  25. 25.

    L.E. Murr, K.N. Amato, S.J. Li, Y.X. Tian, X.Y. Cheng, S.M. Gaytan, E. Martineza, P.W. Shindo, F. Medina, and R.B. Wicker: Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 4, 1396 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    N. Mahmutyazicioglu, O. Albayrak, M. Ipekoglu, and S. Altintas: Effects of alumina (Al2O3) addition on the cell structure and mechanical properties of 6061 foams. J. Mater. Res. 28, 2509 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Z. Wang, J. Shen, G. Lu, and L. Zhao: Compressive behavior of closed-cell aluminum alloy foams at medium strain rates. Mater. Sci. Eng., A 528, 2326 (2011).

    Article  CAS  Google Scholar 

  28. 28.

    P. Schüler, S.F. Fischer, A. Bührig-Polaczek, and C. Fleck: Deformation and failure behavior of open cell Al foams under quasistatic and impact loading. Mater. Sci. Eng., A 587, 250 (2013).

    Article  CAS  Google Scholar 

  29. 29.

    Q.M. Li, I. Magkiriadis, and J.J. Harrigan: Compressive strain at the onset of densification of cellular solids. J. Cell. Plast. 42, 371 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    D. Ruan, G. Lu, F.L. Chen, and E. Siores: Compressive behaviour of aluminium foams at low and medium strain rates. Compos. Struct. 57, 331 (2002).

    Article  Google Scholar 

  31. 31.

    C.M. Cady, G.T. Gray, III, C. Liu, M.L. Lovato, and T. Mukai: Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature. Mater. Sci. Eng., A 525, 1 (2009).

    Article  CAS  Google Scholar 

  32. 32.

    S.W. Youn and C.G. Kang: Evaluation of mechanical properties of porous 6061 alloys fabricated by the powder compression and induction heating process. Metall. Mater. Trans. A 35, 2419 (2004).

    Article  Google Scholar 

  33. 33.

    M. Peroni, G. Solomos, and V. Pizzinato: Impact behaviour testing of aluminium foam. Int. J. Impact Eng. 53, 74 (2013).

    Article  Google Scholar 

  34. 34.

    C.R. Calladine and R.W. English: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure. Int. J. Mech. Sci. 26, 689 (1984).

    Article  Google Scholar 

  35. 35.

    A.E. Simone and L.J. Gibson: Effects of solid distribution on the stiffness and strength of metallic foams. Acta Mater. 46, 2139 (1998).

    CAS  Article  Google Scholar 

  36. 36.

    C. Chen, T.J. Lu, and N.A. Fleck: Effect of imperfections on the yielding of two-dimensional foams. J. Mech. Phys. Solid. 47, 2235 (1999).

    CAS  Article  Google Scholar 

  37. 37.

    F. Han, H. Cheng, Z. Li, and Q. Wang: The strain rate effect of an open cell aluminum foam. Metall. Mater. Trans. A 36, 645 (2005).

    Article  Google Scholar 

  38. 38.

    B. Jiang, Z. Wang, and N. Zhao: Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scripta Mater. 56, 169 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    F. Campana and D. Pilone: Effect of wall microstructure and morphometric parameters on the crush behaviour of Al alloy foams. Mater. Sci. Eng., A 479, 58 (2008).

    Article  CAS  Google Scholar 

  40. 40.

    J.W. Klintworth and W.J. Stronge: Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs. Int. J. Mech. Sci. 30, 273 (1988).

    Article  Google Scholar 

  41. 41.

    X. Wang and G. Zhou: The static compressive behavior of aluminum foam. Rev. Adv. Mater. Sci. 33, 316 (2013).

    Google Scholar 

  42. 42.

    B. Song, W. Chen, T. Yanagita, and D.J. Frew: Confinement effects on the dynamic compressive properties of an epoxy syntactic foam. Compos. Struct. 67, 279 (2005).

    Article  Google Scholar 

  43. 43.

    E.M. Wouterson, F.Y.C. Boey, X. Hu, and S.C. Wong: Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures. Compos. Sci. Technol. 65, 1840 (2005).

    CAS  Article  Google Scholar 

  44. 44.

    Z. Esen and S. Bor: Processing of titanium foams using magnesium spacer particles. Scripta Mater. 56, 341 (2007).

    CAS  Article  Google Scholar 

  45. 45.

    M.C. Saha, M.E. Kabir, and S. Jeelani: Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Mater. Sci. Eng., A 479, 213 (2008).

    Article  CAS  Google Scholar 

  46. 46.

    N. Michailidis, F. Stergioudi, and A. Tsouknidas: Deformation and energy absorption properties of powder-metallurgy produced Al foams. Mater. Sci. Eng., A 528, 7222 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    S. Chang, Y. Huang, S. Yang, S. Kuo, and M. Lee: In vitro properties of gellan gum sponge as the dental filling to maintain alveolar space. Carbohydr. Polym. 88, 684 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    B. Koohbor, S. Mallon, A. Kidane, and W. Lu: The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading. Polym. Test. 44, 112 (2015).

    CAS  Article  Google Scholar 

  49. 49.

    J. Zhou, P. Shrotriya, and W.O. Soboyejo: Mechanisms and mechanics of compressive deformation in open-cell Al foams. Mech. Mater. 36, 781 (2004).

    Article  Google Scholar 

  50. 50.

    A. Paul and U. Ramamurty: Variability in mechanical properties of a metal foam. Acta Mater. 52, 869 (2004).

    Article  CAS  Google Scholar 

  51. 51.

    R.E. Raj, V. Parameswaran, and B.S.S. Daniel: Comparison of quasi-static and dynamic compression behavior of closed-cell aluminum foam. Mater. Sci. Eng., A 526, 11 (2009).

    Article  CAS  Google Scholar 

  52. 52.

    D.P. Mondal, M.D. Goyal, and S. Das: Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam. Mater. Sci. Eng., A 507, 102 (2009).

    Article  CAS  Google Scholar 

  53. 53.

    F. Yi, Z. Zhu, F. Zu, S. Hu, and P. Yi: Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams. Mater. Charact. 47, 417 (2001).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This work has been financially supported by the Department of Science and Technology, Government of India (Project No. SR/FTP/PS-214/2011).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Somnath Biswas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soni, B., Biswas, S. Effects of cell parameters at low strain rates on the mechanical properties of metallic foams of Al and 7075-T6 alloy processed by pressurized infiltration casting method. Journal of Materials Research 33, 3418–3429 (2018). https://doi.org/10.1557/jmr.2018.281

Download citation