Effect of thermal cycles on the laser beam welded joint of AA2060 alloys

Abstract

The effects of the thermal cyclic aging treatment on the microstructure and mechanical properties of 2060 Al–Li alloy laser beam welded joints were investigated. Aging treatments were conducted at different temperatures and for different cycles. Test results showed that the tensile strength of the weld joints increased and the elongation slightly decreased after the thermal cycling treatment. It was also found that the heat affected zone (HAZ) of the welds exhibited a significant increase in microhardness, whilst the microhardness variation of the nondendrite equiaxed zone (EQZ) can be neglected. The strengthening effect of the thermal cycling became more obvious as the temperature and cycles increased. The highest strength of around 513 MPa (96% of the base metal) was obtained at the temperature of 180 °C. Reprecipitation of strengthening phases such as T1 in the HAZ at 180 °C was observed by TEM, which can be considered as the main reason for the strengthening effect of the aging treatment.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

References

  1. 1.

    T. Dursun and C. Soutis: Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    J.C. Williams and E.A. Starke: Progress in structural materials for aerospace systems. Acta Mater. 51, 5775 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    E.J. Lavernia, T.S. Srivatsan, and F.A. Mohamed: Strength, deformation, fracture behaviour and ductility of aluminium–lithium alloys. J. Mater. Sci. 25, 1137 (1990).

    CAS  Article  Google Scholar 

  4. 4.

    A. Ravindra, E.S. Dwarakadasa, T.S. Srivatsan, C. Ramanath, and K.V.V. Iyengar: Electron-beam weld microstructures and properties of aluminium–lithium alloy 8090. J. Mater. Sci. 28, 3173 (1993).

    CAS  Article  Google Scholar 

  5. 5.

    P.E. Magnusen, D.C. Mooy, L.A. Yocum, and R.J. Rioja: Development of high toughness sheet and extruded products for airplane fuselage structures. In ICAA13 Pittsburgh, H. Weiland, ed. (Springer, Cham, Germany, 2012); p. 353.

    Google Scholar 

  6. 6.

    T.S. Srivatsan and T.S. Sudarshan: Welding of lightweight aluminum–lithium alloys. Weld. Res. Suppl. 70, 173 (1991).

    Google Scholar 

  7. 7.

    R. Xiao and X. Zhang: Problems and issues in laser beam welding of aluminum–lithium alloys. J. Manuf. Process. 16, 166 (2014).

    Article  Google Scholar 

  8. 8.

    Y. Shi, F. Zhong, X. Li, S. Gong, and L. Chen: Effect of laser beam welding on tear toughness of a 1420 aluminum alloy thin sheet. Mater. Sci. Eng., A 465, 153 (2007).

    Article  CAS  Google Scholar 

  9. 9.

    L. Cui, X. Li, D. He, L. Chen, and S. Gong: Effect of Nd:YAG laser welding on microstructure and hardness of an Al–Li based alloy. Mater. Charact. 71, 95 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    F.M. Ghaini, M. Sheikhi, M.J. Torkamany, and J. Sabbaghzadeh: The relation between liquation and solidification cracks in pulsed laser welding of 2024 aluminium alloy. Mater. Sci. Eng., A 519, 167 (2009).

    Article  CAS  Google Scholar 

  11. 11.

    K.H. Hou and W.A. Baeslack: Effect of solute segregation on the weld fusion zone microstructure in CO2 laser beam and gas tungsten arc welds in Al–Li–Cu alloy 2195. J. Mater. Sci. Lett. 15, 208 (1996).

    CAS  Article  Google Scholar 

  12. 12.

    B. Fu, G. Qin, X. Meng, Y. Ji, Y. Zou, and Z. Lei: Microstructure and mechanical properties of newly developed aluminum–lithium alloy 2A97 welded by fiber laser. Mater. Sci. Eng., A 617, 1 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    X. Zhang, W. Yang, and R. Xiao: Microstructure and mechanical properties of laser beam welded Al–Li alloy 2060 with Al–Mg filler wire. Mater. Des. 88, 446 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    W. Tao, B. Han, and Y. Chen: Microstructural and mechanical characterization of aluminum–lithium alloy 2060 welded by fiber laser. J. Laser Appl. 28, 22 (2016).

    Article  CAS  Google Scholar 

  15. 15.

    P.A. Molian and T.S. Srivatsan: Weldability of aluminium–lithium alloy 2090 using laser welding. J. Mater. Sci. Lett. 25, 3347 (1990).

    CAS  Google Scholar 

  16. 16.

    Y. Zhang, F. Lu, H. Wang, X. Wang, H. Cui, and X. Tang: Reduced hot cracking susceptibility by controlling the fusion ratio in laser welding of dissimilar Al alloys joints. J. Mater. Res. 30, 993 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    A.Y. Ishchenko: High-strength aluminium alloys for welded structures in the aircraft industry. Weld. Int. 19, 173 (2005).

    Article  Google Scholar 

  18. 18.

    K. Chen, W.X. Yang, and R.S. Xiao: Direct laser welding of an Al–Li alloy plate without prior surface cleaning. Lasers Eng. 22, 361 (2011).

    Google Scholar 

  19. 19.

    R. Xiao, W. Yang, and C. Kai: Porosity characterization in laser welds of Al–Li alloy1420. Appl. Laser 27, 13 (2007).

    Google Scholar 

  20. 20.

    I.N. Fridlyander, N.I. Kolobnev, L.B. Khokhlatova, K.H. Rendigs, G. Tempus, A. Haszler, C. Keidel, T. Pfannenmüller, and A.L. Berezina: Structure and properties of sheets of 1424 alloy. Mater. Sci. Forum 331–337, 1393 (2000).

    Article  Google Scholar 

  21. 21.

    W.D. Yong, F.J. Cai, and X.U. Wei: Effect of heat treatment on microstructures and mechanical properties of Al–Li–Cu alloy TIG welded joint. Rare Metal Mater. Eng. 42, 579 (2013).

    Google Scholar 

  22. 22.

    R. Ahmad and M.A. Bakar: Effect of a post-weld heat treatment on the mechanical and microstructure properties of AA6061 joints welded by the gas metal arc welding cold metal transfer method. Mater. Des. 32, 5120 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    L. Srinivasan, B.K.T. Deepan, P. Sathiya, and S. Biju: Effect of heat input, heat treatment on microstructure and mechanical properties of GTA welded aerospace material 15CDV6. J. Mater. Res. 32, 1361 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    K.Y.S. Wang, C. Chen, and L. Xing: Influence of post-weld heat treatment on microstructure and mechanical properties of Al–Li alloy electron beam welding joint. Rare Metal Mater. Eng. 42, 579 (2013).

    CAS  Google Scholar 

  25. 25.

    S. Malarvizhi, K. Raghukandan, and N. Viswanathan: Investigations on the influence of post weld heat treatment on fatigue crack growth behaviour of electron beam welded AA2219 alloy. Int. J. Fatigue 30, 1543 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    H. Aydın, A. Bayram, and İ. Durgun: The effect of post-weld heat treatment on the mechanical properties of 2024-T4 friction stir-welded joints. Mater. Des. 31, 2568 (2010).

    Article  CAS  Google Scholar 

  27. 27.

    C. Li, H.Y. Ding, C. Li, H.E. En-Guang, and G.U. Chang-Shi: Effects of post-weld heat treatment on microstructure of laser welded joints in an Al–Li alloy. Trans. Mater. Heat Treat. 35, 58 (2014).

    Google Scholar 

  28. 28.

    L. Xu, Z. Tian, Y. Peng, and X. Zhang: Laser-MIG hybrid welding on high strength aluminum alloy. Chin. J. Rare Met. 29, 773 (2005).

    CAS  Google Scholar 

  29. 29.

    W.S. Su Diyao and J. Huijin: Effects of aging treatments on microstructure and micro-hardness of 2219-T87 welds. J. Aeronaut. Mater. 35, 49 (2015).

    Google Scholar 

  30. 30.

    J. Li, Y. Chen, X. Zhang, P. Liu, and C.S. University: Influence of non-isothermal aging on microstructures and mechanical properties of Al–Li alloy. Rare Met. Mater. Eng. 46, 183 (2017).

    CAS  Google Scholar 

  31. 31.

    A. Gutierrez and J.C. Lippold: A proposed mechanism for equiaxed grain formation along the fusion boundary in aluminum–copper–lithium alloys. Weld. J. 77, 123 (1998).

    Google Scholar 

  32. 32.

    S.F. Zhang, W.D. Zeng, W.H. Yang, C.L. Shi, and H.J. Wang: Ageing response of a Al–Cu–Li 2198 alloy. Mater. Des. 63, 368 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    S. Ahmadi, H. Arabi, and A. Shokuhfar: Formation mechanisms of precipitates in an Al–Cu–Li–Zr alloy and their effects on strength and electrical resistance of the alloy. J. Alloys Compd. 484, 90 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    J.C. Huang and A.J. Ardell: Addition rules and the contribution of δ′ precipitates to strengthening of aged Al–Li–Cu alloys. Acta Metall. 36, 2995 (1988).

    CAS  Article  Google Scholar 

  35. 35.

    K.S. Kumar, S.A. Brown, and J.R. Pickens: Microstructural evolution during aging of an Al–Cu–Li–Ag–Mg–Zr alloy. Acta Mater. 44, 1899 (1996).

    CAS  Article  Google Scholar 

  36. 36.

    Z. Zhao, X. Li, L. Xu, and D. Han: Strengthening effect of T1 precipitates and influence of minor cerium in 2090 Al–Li alloys. Chin. J. Nonferrous Met. 9, 546 (1999).

    CAS  Google Scholar 

  37. 37.

    H. Sidhar and R.S. Mishra: Aging kinetics of friction stir welded Al–Cu–Li–Mg–Ag and Al–Cu–Li–Mg alloys. Mater. Des. 110, 60 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    P. Lequeu, K.P. Smith, and A. Daniélou: Aluminum–copper–lithium alloy 2050 developed for medium to thick plate. J. Mater. Eng. Perform. 19, 841 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    R. Yoshimura, T.J. Konno, E. Abe, and K. Hiraga: Transmission electron microscopy study of the early stage of precipitates in aged Al–Li–Cu alloys. Acta Mater. 51, 2891 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    W.Y. Chen Zheng, D. Zhanlai, and Z. Zhilong: Mechanism of extrinsic strengthening and instrinsic toughening for aluminium–lithium alloy containing rare earth element. J. Chin. Soc. Rare Earths. 19, 23 (1998).

    Google Scholar 

  41. 41.

    B. Han, W. Tao, Y. Chen, and H. Li: Double-sided laser beam welded T-joints for aluminum–lithium alloy aircraft fuselage panels: Effects of filler elements on microstructure and mechanical properties. Opt. Laser Technol. 93, 99 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    A. Kostrivas and J.C. Lippold: Weldability of Li-bearing aluminum alloys. Int. Mater. Rev. 44, 217 (1999).

    CAS  Article  Google Scholar 

  43. 43.

    A. Kostrivas and J.C. Lippold: Fusion boundary microstructure evolution in aluminium alloys. Weld. World 50, 24 (2006).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sujun Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mao, L., Jin, H., Ye, F. et al. Effect of thermal cycles on the laser beam welded joint of AA2060 alloys. Journal of Materials Research 33, 3439–3448 (2018). https://doi.org/10.1557/jmr.2018.229

Download citation