A brief review on the growth mechanism of CuO nanowires via thermal oxidation

Abstract

For one-dimensional nanomaterials, the performances are strongly related to the diameters, lengths, morphologies, and structures, implying that it is of great significance to understand the related growth mechanisms and thus to achieve the desired nanostructures. Thermal oxidation of copper has been widely used to fabricate CuO nanowires (NWs), whereas the growth mechanism still remains controversial in spite of the extensive investigations. Therefore, this review aims to offer a critical discussion about the growth mechanisms. First, the effects of different growth conditions on the growth of CuO NWs are introduced for basic understanding. Subsequently, the proposed mechanisms in different literature studies, i.e., the vapor–solid, self-catalyzed growth, stress-induced growth, stress grain boundary (GB) diffusion, and oxygen concentration gradient, are discussed and summarized. It seems that the combination of “stress GB diffusion” and “oxygen concentration gradient” mechanisms could be relevant for the growth of CuO NWs via thermal oxidation of copper.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

References

  1. 1.

    L. Liu, L. Zhang, S.M. Kim, and S. Park: Helical metallic micro- and nanostructures: Fabrication and application. Nanoscale 6, 9355 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Li, X-Y. Yang, Y. Feng, Z-Y. Yuan, and B-L. Su: One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: Synthesis, characterizations, properties and applications. Crit. Rev. Solid State Mater. Sci. 37, 1 (2012).

    Article  CAS  Google Scholar 

  3. 3.

    M.M. Arafat, B. Dinan, S.A. Akbar, and A.S.M.A. Haseeb: Gas sensors based on one dimensional nanostructured metal-oxides: A review. Sensors 12, 7207 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    R.S. Devan, R.A. Patil, J-H. Lin, and Y-R. Ma: One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 22, 3326 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    G. Filipič and U. Cvelbar: Copper oxide nanowires: A review of growth. Nanotechnology 23, 194001 (2012).

    Article  CAS  Google Scholar 

  6. 6.

    Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang: CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    F. Cao, S. Jia, H. Zheng, L. Zhao, H. Liu, L. Li, L. Zhao, Y. Hu, H. Gu, and J. Wang: Thermal-induced formation of domain structures in CuO nanomaterials. Phys. Rev. Mater. 1, 053401 (2017).

    Article  Google Scholar 

  8. 8.

    H. Liu, F. Cao, H. Zheng, H. Sheng, L. Li, S. Wu, C. Liu, and J. Wang: In situ observation of the sodiation process in CuO nanowires. Chem. Commun. 51, 10443 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    G. Tan, F. Wu, Y. Yuan, R. Chen, T. Zhao, Y. Yao, J. Qian, J. Liu, Y. Ye, R. Shahbazian-Yassar, J. Lu, and K. Amine: Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nat. Commun. 7, 11774 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    S. Anandan, X. Wen, and S. Yang: Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys. 93, 35 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    C-T. Hsieh, J-M. Chen, H-H. Lin, and H-C. Shih: Field emission from various CuO nanostructures. Appl. Phys. Lett. 83, 3383 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    Y. Feng and X. Zheng: Plasma-enhanced catalytic CuO nanowires for CO oxidation. Nano Lett. 10, 4762 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    X. Liu, W. Yang, L. Chen, and J. Jia: Three-dimensional copper foam supported CuO nanowire arrays: An efficient non-enzymatic glucose sensor. Electrochim. Acta 235, 519 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    D. Zappa, E. Comini, R. Zamani, J. Arbiol, J.R. Morante, and G. Sberveglieri: Preparation of copper oxide nanowire-based conductometric chemical sensors. Sens. Actuators, B 182, 7 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    H. Sheng, H. Zheng, S. Jia, L. Li, F. Cao, S. Wu, W. Han, H. Liu, D. Zhao, and J. Wang: Twin structures in CuO nanowires. J. Appl. Crystallogr. 49, 462 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    M. Cao, C. Hu, Y. Wang, Y. Guo, C. Guo, and E. Wang: A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chem. Commun., 1884 (2003).

  17. 17.

    K.M. Shrestha, C.M. Sorensen, and K.J. Klabunde: Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region. J. Phys. Chem. C 114, 14368 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    X. Liu, J. Zhang, Y. Kang, S. Wu, and S. Wang: Brochantite tabular microspindles and their conversion to wormlike CuO structures for gas sensing. CrystEngComm 14, 620 (2012).

    Article  Google Scholar 

  19. 19.

    Y. Fan, R. Liu, W. Du, Q. Lu, H. Pang, and F. Gao: Synthesis of copper(II) coordination polymers and conversion into CuO nanostructures with good photocatalytic, antibacterial and lithium ion battery performances. J. Mater. Chem. 22, 12609 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    W. Wang, L. Wang, H. Shi, and Y. Liang: A room temperature chemical route for large scale synthesis of sub-15 nm ultralong CuO nanowires with strong size effect and enhanced photocatalytic activity. CrystEngComm 14, 5914 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    A.S. Ethiraj and D.J. Kang: Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res. Lett. 7, 70 (2012).

    Article  CAS  Google Scholar 

  22. 22.

    B. Toboonsung and P. Singjai: Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process. J. Alloys Compd. 509, 4132 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    N. Mukherjee, B. Show, S.K. Maji, U. Madhu, S.K. Bhar, B.C. Mitra, G.G. Khan, and A. Mondal: CuO nano-whiskers: Electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater. Lett. 65, 3248 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    X. Jiang, T. Herricks, and Y. Xia: CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2, 1333 (2002).

    CAS  Article  Google Scholar 

  25. 25.

    C-T. Hsieh, J-M. Chen, H-H. Lin, and H-C. Shih: Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Appl. Phys. Lett. 82, 3316 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    A. Kumar, A.K. Srivastava, P. Tiwari, and R.V. Nandedkar: The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J. Phys.: Condens. Matter 16, 8531 (2004).

    CAS  Google Scholar 

  27. 27.

    A.M.B. Gonçalves, L.C. Campos, A.S. Ferlauto, and R.G. Lacerda: On the growth and electrical characterization of CuO nanowires by thermal oxidation. J. Appl. Phys. 106, 034303 (2009).

    Article  CAS  Google Scholar 

  28. 28.

    K. Mimura, J-W. Lim, M. Isshiki, Y. Zhu, and Q. Jiang: Brief review of oxidation kinetics of copper at 350 °C to 1050 °C. Metall. Mater. Trans. A 37, 1231 (2006).

    Article  Google Scholar 

  29. 29.

    R.F. Zhang: Film formation in the second step of micro-arc oxidation on magnesium alloys. Corros. Sci. 52, 1285 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    M. Laleh, A.S. Rouhaghdam, T. Shahrabi, and A. Shanghi: Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D. J. Alloys Compd. 496, 548 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    H-D. Yu, Z. Zhang, and M-Y. Han: Metal corrosion for nanofabrication. Small 8, 2621 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    H. Zheng, S. Wu, H. Sheng, C. Liu, Y. Liu, F. Cao, Z. Zhou, X. Zhao, D. Zhao, and J. Wang: Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation. Appl. Phys. Lett. 104, 141906 (2014).

    Article  CAS  Google Scholar 

  33. 33.

    S. Glass and H. Nienhaus: Continuous monitoring of Mg oxidation by internal exoemission. Phys. Rev. Lett. 93, 168302 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    Y. Wang, Z. Fan, X. Zhou, and G.E. Thompson: Characterisation of magnesium oxide and its interface with α-Mg in Mg–Al-based alloys. Philos. Mag. Lett. 91, 516 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    C. Bungaro, C. Noguera, P. Ballone, and W. Kress: Early oxidation stages of Mg(0001): A density functional study. Phys. Rev. Lett. 79, 4433 (1997).

    CAS  Article  Google Scholar 

  36. 36.

    M.F. Francis and C.D. Taylor: First-principles insights into the structure of the incipient magnesium oxide and its instability to decomposition: Oxygen chemisorption to Mg(0001) and thermodynamic stability. Phys. Rev. B 87, 075450 (2013).

    Article  CAS  Google Scholar 

  37. 37.

    G. Zhou, L. Luo, L. Li, J. Ciston, E.A. Stach, and J.C. Yang: Step-edge-induced oxide growth during the oxidation of Cu surfaces. Phys. Rev. Lett. 109, 235502 (2012).

    Article  CAS  Google Scholar 

  38. 38.

    A. Atkinson and R.I. Taylor: The diffusion of Ni in the bulk and along dislocations in NiO single crystals. Philos. Mag. A 39, 581 (1979).

    CAS  Article  Google Scholar 

  39. 39.

    K.R. Lawless: The oxidation of metals. Rep. Prog. Phys. 37, 231 (1974).

    CAS  Article  Google Scholar 

  40. 40.

    A. Atkinson: Transport processes during the growth of oxide films at elevated temperature. Rev. Mod. Phys. 57, 437 (1985).

    CAS  Article  Google Scholar 

  41. 41.

    E. Schröder, R. Fasel, and A. Kiejna: Mg(0001) surface oxidation: A two-dimensional oxide phase. Phys. Rev. B 69, 193405 (2004).

    Article  CAS  Google Scholar 

  42. 42.

    R.F. Tylecote: The oxidation of copper in the temperature range 200–800 °C. J. Inst. Met. 81, 681 (1952).

    Google Scholar 

  43. 43.

    Q. Yang, Z. Guo, X. Zhou, J. Zou, and S. Liang: Ultrathin CuO nanowires grown by thermal oxidation of copper powders in air. Mater. Lett. 153, 128 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    S.C. Vanithakumari, S.L. Shinde, and K.K. Nanda: Controlled synthesis of CuO nanostructures on Cu foil, rod and grid. Mater. Sci. Eng., B 176, 669 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    H. Sheng, H. Zheng, F. Cao, S. Wu, L. Li, C. Liu, D. Zhao, and J. Wang: Anelasticity of twinned CuO nanowires. Nano Res. 8, 3687 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    K. Zhang, C. Rossi, C. Tenailleau, P. Alphonse, and J.Y. Chane-Ching: Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate. Nanotechnology 18, 275607 (2007).

    Article  CAS  Google Scholar 

  47. 47.

    C-L. Hsu, J-Y. Tsai, and T-J. Hsueh: Ethanol gas and humidity sensors of CuO/Cu2O composite nanowires based on a Cu through-silicon via approach. Sens. Actuators, B 224, 95 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    M.L. Zhong, D.C. Zeng, Z.W. Liu, H.Y. Yu, X.C. Zhong, and W.Q. Qiu: Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Mater. 58, 5926 (2010).

    CAS  Article  Google Scholar 

  49. 49.

    M. Kaur, K.P. Muthe, S.K. Despande, S. Choudhury, J.B. Singh, N. Verma, S.K. Gupta, and J.V. Yakhmi: Growth and branching of CuO nanowires by thermal oxidation of copper. J. Cryst. Growth 289, 670 (2006).

    CAS  Article  Google Scholar 

  50. 50.

    C.H. Xu, C.H. Woo, and S.Q. Shi: The effects of oxidative environments on the synthesis of CuO nanowires on Cu substrates. Superlattices Microstruct. 36, 31 (2004).

    CAS  Article  Google Scholar 

  51. 51.

    C-H. Tu, C-C. Chang, C-H. Wang, H-C. Fang, M.R.S. Huang, Y-C. Li, H-J. Chang, C-H. Lu, Y-C. Chen, R-C. Wang, Y. Tzeng, and C-P. Liu: Resistive memory devices with high switching endurance through single filaments in Bi-crystal CuO nanowires. J. Alloys Compd. 615, 754 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    Z. Han, L. Lu, H.W. Zhang, Z.Q. Yang, F.H. Wang, and K. Lu: Comparison of the oxidation behavior of nanocrystalline and coarse-grain copper. Oxid. Met. 63, 261 (2005).

    CAS  Article  Google Scholar 

  53. 53.

    B.J. Hansen, H-l. Chan, J. Lu, G. Lu, and J. Chen: Short-circuit diffusion growth of long Bi-crystal CuO nanowires. Chem. Phys. Lett. 504, 41 (2011).

    CAS  Article  Google Scholar 

  54. 54.

    L. Yuan and G. Zhou: Enhanced CuO nanowire formation by thermal oxidation of roughened copper. J. Electrochem. Soc. 159, C205 (2012).

    CAS  Article  Google Scholar 

  55. 55.

    P. Shao, S. Deng, J. Chen, and N. Xu: Large-scale fabrication of ordered arrays of microcontainers and the restraint effect on growth of CuO nanowires. Nanoscale Res. Lett. 6, 86 (2011).

    Article  Google Scholar 

  56. 56.

    X. Li, J. Zhang, Y. Yuan, L. Liao, and C. Pan: Effect of electric field on CuO nanoneedle growth during thermal oxidation and its growth mechanism. J. Appl. Phys. 108, 024308 (2010).

    Article  CAS  Google Scholar 

  57. 57.

    J-P. Wang and W.D. Cho: Oxidation behavior of pure copper in oxygen and/or water vapor at intermediate temperature. ISIJ Int. 49, 1926 (2009).

    CAS  Article  Google Scholar 

  58. 58.

    P.M. Rao and X. Zheng: Rapid catalyst-free flame synthesis of dense, aligned α-Fe2O3 nanoflake and CuO nanoneedle arrays. Nano Lett. 9, 3001 (2009).

    CAS  Article  Google Scholar 

  59. 59.

    R. Simas, G.N. Albert, J. Hua, T. Ying, I.K. Victor, S. Jani, D.O. Elena, N.B. Sofia, N.O. Alexander, and I.K. Esko: A novel method for metal oxide nanowire synthesis. Nanotechnology 20, 165603 (2009).

    Article  CAS  Google Scholar 

  60. 60.

    G. Filipič, O. Baranov, M. Mozetič, and U. Cvelbar: Growth dynamics of copper oxide nanowires in plasma at low pressures. J. Appl. Phys. 117, 043304 (2015).

    Article  CAS  Google Scholar 

  61. 61.

    A. Altaweel, G. Filipič, T. Gries, and T. Belmonte: Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow. J. Cryst. Growth 407, 17 (2014).

    CAS  Article  Google Scholar 

  62. 62.

    R.S. Wagner and W.C. Ellis: Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).

    CAS  Article  Google Scholar 

  63. 63.

    S.S. Brenner and G.W. Sears: Mechanism of whisker growth—III nature of growth sites. Acta Metall. 4, 268 (1956).

    CAS  Article  Google Scholar 

  64. 64.

    J-H. Park and K. Natesan: Oxidation of copper and electronic transport in copper oxides. Oxid. Met. 39, 411 (1993).

    CAS  Article  Google Scholar 

  65. 65.

    Y. Zhu, K. Mimura, and M. Isshiki: Influence of oxide grain morphology on formation of the CuO scale during oxidation of copper at 600–1000 °C. Corros. Sci. 47, 537 (2005).

    CAS  Article  Google Scholar 

  66. 66.

    L. Yuan, Y. Wang, R. Mema, and G. Zhou: Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. 59, 2491 (2011).

    CAS  Article  Google Scholar 

  67. 67.

    L. Lu, J. Wang, H. Zheng, D. Zhao, R. Wang, and J. Gui: Spontaneous formation of filamentary Cd whiskers and degradation of CdMgYb icosahedral quasicrystal under ambient conditions. J. Mater. Res. 27, 1895 (2012).

    CAS  Article  Google Scholar 

  68. 68.

    M. Farbod, N. Meamar Ghaffari, and I. Kazeminezhad: Fabrication of single phase CuO nanowires and effect of electric field on their growth and investigation of their photocatalytic properties. Ceram. Int. 40, 517 (2014).

    CAS  Article  Google Scholar 

  69. 69.

    J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, and P.X. Yan: CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454, 268 (2008).

    CAS  Article  Google Scholar 

  70. 70.

    S-K. Lee and W-H. Tuan: Scalable process to produce CuO nanowires and their formation mechanism. Mater. Lett. 117, 101 (2014).

    CAS  Article  Google Scholar 

  71. 71.

    R. Mema, L. Yuan, Q. Du, Y. Wang, and G. Zhou: Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem. Phys. Lett. 512, 87 (2011).

    CAS  Article  Google Scholar 

  72. 72.

    F. Cao, H. Zheng, S. Jia, H. Liu, L. Li, B. Chen, X. Liu, S. Wu, H. Sheng, R. Xing, D. Zhao, and J. Wang: Atomistic observation of structural evolution during magnesium oxide growth. J. Phys. Chem. C 120, 26873 (2016).

    CAS  Article  Google Scholar 

  73. 73.

    C. Xu, X. Yang, S-Q. Shi, Y. Liu, C. Surya, and C. Woo: Effects of local gas-flow field on synthesis of oxide nanowires during thermal oxidation. Appl. Phys. Lett. 92, 253117 (2008).

    Article  CAS  Google Scholar 

  74. 74.

    K.P. Rice, J. Han, I.P. Campbell, and M.P. Stoykovich: In situ absorbance spectroscopy for characterizing the low temperature oxidation kinetics of sputtered copper films. Oxid. Met. 83, 89 (2015).

    CAS  Article  Google Scholar 

  75. 75.

    C.H. Xu, C.H. Woo, and S.Q. Shi: Formation of CuO nanowires on Cu foil. Chem. Phys. Lett. 399, 62 (2004).

    CAS  Article  Google Scholar 

  76. 76.

    C. Wang, Y. Wang, X. Liu, F. Diao, L. Yuan, and G. Zhou: Novel hybrid nanocomposites of polyhedral Cu2O nanoparticles–CuO nanowires with enhanced photoactivity. Phys. Chem. Chem. Phys. 16, 17487 (2014).

    CAS  Article  Google Scholar 

  77. 77.

    F. Cao, S. Jia, X. Liu, Y. Liu, H. Zheng, and J. Wang: Orientation domains in CuO nanowires. J. Chin. Electron Microsc. Soc. 36, 222 (2017).

    Google Scholar 

  78. 78.

    A. Altaweel, T. Gries, S. Migot, P. Boulet, A. Mézin, and T. Belmonte: Localised growth of CuO nanowires by micro-afterglow oxidation at atmospheric pressure: Investigation of the role of stress. Surf. Coat. Technol. 305, 254 (2016).

    CAS  Article  Google Scholar 

  79. 79.

    U. Cvelbar: Towards large-scale plasma-assisted synthesis of nanowires. J. Phys. D: Appl. Phys. 44, 174014 (2011).

    Article  CAS  Google Scholar 

  80. 80.

    K. Ostrikov, I. Levchenko, U. Cvelbar, M. Sunkara, and M. Mozetic: From nucleation to nanowires: A single-step process in reactive plasmas. Nanoscale 2, 2012 (2010).

    CAS  Article  Google Scholar 

  81. 81.

    U. Cvelbar, Z. Chen, M.K. Sunkara, and M. Mozetič: Spontaneous growth of superstructure α-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small 4, 1610 (2008).

    CAS  Article  Google Scholar 

  82. 82.

    Z. Chen, U. Cvelbar, M. Mozetič, J. He, and M.K. Sunkara: Long-range ordering of oxygen-vacancy planes in α-Fe2O3 nanowires and nanobelts. Chem. Mater. 20, 3224 (2008).

    Article  CAS  Google Scholar 

  83. 83.

    A. Nasibulin, S. Rackauskas, H. Jiang, Y. Tian, P. Mudimela, S. Shandakov, L. Nasibulina, S. Jani, and E. Kauppinen: Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2, 373 (2009).

    CAS  Article  Google Scholar 

  84. 84.

    L. Zou, J. Li, D. Zakharov, E.A. Stach, and G. Zhou: In situ atomic-scale imaging of the metal/oxide interfacial transformation. Nat. Commun. 8, 307 (2017).

    Article  CAS  Google Scholar 

  85. 85.

    L. Li, L. Luo, J. Ciston, W.A. Saidi, E.A. Stach, J.C. Yang, and G. Zhou: Surface-step-induced oscillatory oxide growth. Phys. Rev. Lett. 113, 136104 (2014).

    Article  CAS  Google Scholar 

  86. 86.

    A. Ferris, B. Reig, A. Eddarir, J-F. Pierson, S. Garbarino, D. Guay, and D. Pech: Atypical properties of FIB-patterned RuOx nanosupercapacitors. ACS Energy Lett. 2, 1734 (2017).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENT

L. Xiang would like to thank Dr. Cao for many valuable discussions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lijun Xiang or Jian Guo.

Additional information

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiang, L., Guo, J., Wu, C. et al. A brief review on the growth mechanism of CuO nanowires via thermal oxidation. Journal of Materials Research 33, 2264–2280 (2018). https://doi.org/10.1557/jmr.2018.215

Download citation