Lead-free piezoelectric materials and composites for high power density energy harvesting

Abstract

In the emerging era of Internet of Things (IoT), power sources for wireless sensor nodes in conjunction with efficient and secure wireless data transfer are required. Energy harvesting technologies are promising solution toward meeting the requirements for sustainable power sources for the IoT. In this review, we focus on approaches for harvesting stray vibrations and magnetic field due to their abundance in the environment. Piezoelectric materials and piezoelectric–magnetostrictive [magnetoelectric (ME)] composites can be used to harvest vibration and magnetic field, respectively. Currently, such harvesters use modified lead zirconate titanate (or lead-based) piezoelectric materials and ME composites. However, environmental concerns and government regulations require the development of a suitable lead-free replacement for lead-based piezoelectric materials. In the past decade, several lead-free piezoelectric compositions have been developed and demonstrated with promising piezoelectric response. This paper reviews the significant results reported on lead-free piezoelectric materials with respect to high-density energy harvesting, covering novel processing techniques for improving the piezoelectric response and temperature stability. The review of the state-of-the-art studies on vibration and magnetic field harvesting is provided and the results are used to discuss various strategies for designing high-performance energy harvesting devices.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

References

  1. 1.

    D. Maurya, Y. Yan, and S. Priya: Piezoelectric materials for energy harvesting. In Advanced Materials for Clean Energy, Q. Xu and T. Kobayashi, eds. (CRC Press, Boca Raton, 2015); p. 143.

    Google Scholar 

  2. 2.

    S. Priya, H-C. Song, Y. Zhou, R. Varghese, A. Chopra, S-G. Kim, I. Kanno, L. Wu, S. Ha Dong, J. Ryu, and G. Polcawich Ronald: A review on piezoelectric energy harvesting: Materials, methods, and circuits, energy harvest. System 4, 3 (2017).

    Google Scholar 

  3. 3.

    S. Siddiqui, D-I. Kim, L.T. Duy, M.T. Nguyen, S. Muhammad, W-S. Yoon, and N-E. Lee: High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15, 177 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    N. Wu, Q. Wang, and X. Xie: Ocean wave energy harvesting with a piezoelectric coupled buoy structure. Appl. Ocean Res. 50, 110 (2015).

    Article  Google Scholar 

  5. 5.

    A. Mehmood, A. Abdelkefi, M.R. Hajj, A.H. Nayfeh, I. Akhtar, and A.O. Nuhait: Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. J. Sound Vib. 332, 4656 (2013).

    Article  Google Scholar 

  6. 6.

    X.D. Xie, Q. Wang, and N. Wu: Potential of a piezoelectric energy harvester from sea waves. J. Sound Vib. 333, 1421 (2014).

    Article  Google Scholar 

  7. 7.

    Y. Yang, W. Guo, K.C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, and Z.L. Wang: Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12, 2833 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    P.S. Brody and F. Crowne: Mechanism for the high voltage photovoltaic effect in ceramic ferroelectrics. J. Electron. Mater. 4, 955 (1975).

    CAS  Article  Google Scholar 

  9. 9.

    C. Paillard, X. Bai, I.C. Infante, M. Guennou, G. Geneste, M. Alexe, J. Kreisel, and B. Dkhil: Photovoltaics with ferroelectrics: Current status and beyond. Adv. Mater. 28, 5153 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Y.T. Hyunuk Kim and S. Priya: Piezoelectric energy harvesting. In Energy Harvesting Technologies, S. Priya and D.J. Inman (Springer, New York, 2009); p. 524.

    Google Scholar 

  11. 11.

    C.R. Bowen, H.A. Kim, P.M. Weaver, and S. Dunn: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    W.F. Liu and X.B. Ren: Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).

    Article  CAS  Google Scholar 

  13. 13.

    H. Fu and R.E. Cohen: Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    B. Jaffe: Piezoelectric Ceramics (Academic Press, London, 1971).

    Google Scholar 

  15. 15.

    K. Uchino: Ferroelectric Devices, 2nd ed. (CRC Press, Boca Raton, 2010).

    Google Scholar 

  16. 16.

    R. Guo, L.E. Cross, S.E. Park, B. Noheda, D.E. Cox, and G. Shirane: Origin of the high piezoelectric response in PbZr1−xTixO3. Phys. Rev. Lett. 84, 5423 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    B. Noheda, D.E. Cox, G. Shirane, S.E. Park, L.E. Cross, and Z. Zhong: Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn1/3Nb2/3O3–8% PbTiO3. Phys. Rev. Lett. 86, 3891 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    S.O. Leontsev and R.E. Eitel: Progress in engineering high strain lead-free piezoelectric ceramics. Sci. Technol. Adv. Mater. 11, 044302 (2010).

    Article  CAS  Google Scholar 

  19. 19.

    S.J. Zhang, R. Xia, and T.R. Shrout: Lead-free piezoelectric ceramics versus PZT?J. Electroceram. 19, 251 (2007).

    Article  CAS  Google Scholar 

  20. 20.

    T.R. Shrout and S.J. Zhang: Lead-free piezoelectric ceramics: Alternatives for PZT?J. Electroceram. 19, 113 (2007).

    Article  CAS  Google Scholar 

  21. 21.

    M. Kimura, A. Ando, D. Maurya, and S. Priya: Chapter 2-lead zirconate titanate-based piezoceramics. In Advanced Piezoelectric Materials, 2nd ed., K. Uchino, ed. (Woodhead Publishing, Duxford, 2017); p. 95.

    Google Scholar 

  22. 22.

    Y. Yan and S. Priya: Multiferroic magnetoelectric composites/hybrids. In Hybrid and Hierarchical Composite Materials, C-S. Kim, C. Randow, and T. Sano, eds. (Springer International Publishing, New York, 2015); p. 95.

    Google Scholar 

  23. 23.

    J. Rödel, W. Jo, K.T.P. Seifert, E-M. Anton, T. Granzow, and D. Damjanovic: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009).

    Article  CAS  Google Scholar 

  24. 24.

    T. Takenaka, K. Maruyama, and K. Sakata: (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys., Part 1 30, 2236 (1991).

    CAS  Article  Google Scholar 

  25. 25.

    S. Kuharuangrong and W. Schulze: Compositional modifications of 10%–Pb-doped Bi0.5Na0.5TiO3 for high-temperature dielectrics. J. Am. Ceram. Soc. 78, 2274 (1995).

    CAS  Article  Google Scholar 

  26. 26.

    O. Elkechai, M. Manier, and J.P. Mercurio: Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT–KBT) system: A structural and electrical study. Phys. Status Solidi A 157, 499 (1996).

    Article  Google Scholar 

  27. 27.

    T. Takenaka, K. Sakata, and K. Toda: Piezoelectric properties of (Bi1/2Na1/2)TIO3-based ceramics. Ferroelectrics 106, 375 (1990).

    CAS  Article  Google Scholar 

  28. 28.

    P. Marchet, E. Boucher, V. Dorcet, and J.P. Mercurio: Dielectric properties of some low-lead or lead-free perovskite-derived materials: Na0.5Bi0.5TiO3–PbZrO3, Na0.5Bi0.5TiO3–BiScO3 and Na0.5Bi0.5TiO3–BiFeO3 ceramics. J. Eur. Ceram. Soc. 26, 3037 (2006).

    CAS  Article  Google Scholar 

  29. 29.

    N. Hajime and T. Tadashi: Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3–1/2(Bi2O3Sc2O3) system. Jpn. J. Appl. Phys. 36, 6055 (1997).

    Article  Google Scholar 

  30. 30.

    H. Nagata, N. Koizumi, N. Kuroda, I. Igarashi, and T. Takenaka: Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3–BaTiO3–BiFeO3 system. Ferroelectrics 229, 273 (1999).

    CAS  Article  Google Scholar 

  31. 31.

    Y. Li, W. Chen, J. Zhou, Q. Xu, H. Sun, and R. Xu: Dielectric and piezoelecrtic properties of lead-free (Na0.5Bi0.5)TiO3–NaNbO3 ceramics. Mater. Sci. Eng., B 112, 5 (2004).

    Article  CAS  Google Scholar 

  32. 32.

    Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, T.G. Park, D. Do, and S.S. Kim: Effects of Na nonstoichiometry in (Bi0.5Na0.5+ x)TiO3 ceramics. Appl. Phys. Lett. 96, 022901 (2010).

    Article  CAS  Google Scholar 

  33. 33.

    Q. Xu, D-P. Huang, M. Chen, W. Chen, H-X. Liu, and B-H. Kim: Effect of bismuth excess on ferroelectric and piezoelectric properties of a (Na0.5Bi0.5)TiO3–BaTiO3 composition near the morphotropic phase boundary. J. Alloys Compd. 471, 310 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    X.X. Wang, X.G. Tang, and H.L.W. Chan: Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–BaTiO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 85, 91 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    B-J. Chu, D-R. Chen, G-R. Li, and Q-R. Yin: Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics. J. Eur. Ceram. Soc. 22, 2115 (2002).

    CAS  Article  Google Scholar 

  36. 36.

    Q. Xu, M. Chen, W. Chen, H-X. Liu, B-H. Kim, and B-K. Ahn: Effect of CoO additive on structure and electrical properties of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics prepared by the citrate method. Acta Mater. 56, 642 (2008).

    CAS  Article  Google Scholar 

  37. 37.

    M. Bichurin, V. Petrov, A. Zakharov, D. Kovalenko, S.C. Yang, D. Maurya, V. Bedekar, and S. Priya: Magnetoelectric interactions in lead-based and lead-free composites. Materials 4, 651 (2011).

    CAS  Article  Google Scholar 

  38. 38.

    T. Takenaka, H. Nagata, and Y. Hiruma: Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3 and (Bi1/2K1/2)TiO3-based bismuth perovskite lead-free ferroelectric ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1595 (2009).

    Article  Google Scholar 

  39. 39.

    J. Wu, D. Xiao, and J. Zhu: Potassium–sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries. Chem. Rev. 115, 2559 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Y. Gao, J. Zhang, Y. Qing, Y. Tan, Z. Zhang, and X. Hao: Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 ceramic. J. Am. Ceram. Soc. 94, 2968 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    E. Erünal, P. Jakes, S. Körbel, J. Acker, H. Kungl, C. Elsässer, M.J. Hoffmann, and R-A. Eichel: CuO-doped NaNbO3 antiferroelectrics: Impact of aliovalent doping and nonstoichiometry on the defect structure and formation of secondary phases. Phys. Rev. B 84, 184113 (2011).

    Article  CAS  Google Scholar 

  42. 42.

    R-A. Eichel, E. Erünal, P. Jakes, S. Körbel, C. Elsässer, H. Kungl, J. Acker, and M.J. Hoffmann: Interactions of defect complexes and domain walls in CuO-doped ferroelectric (K,Na)NbO3. Appl. Phys. Lett. 102, 242908 (2013).

    Article  CAS  Google Scholar 

  43. 43.

    X. Cheng, J. Wu, X. Lou, X. Wang, X. Wang, D. Xiao, and J. Zhu: Achieving both giant d33 and high TC in patassium–sodium niobate ternary system. ACS Appl. Mater. Interfaces 6, 750 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    L. Wang, W. Ren, P. Shi, X. Chen, X. Wu, and X. Yao: Enhanced ferroelectric properties in Mn-doped K0.5Na0.5NbO3 thin films derived from chemical solution deposition. Appl. Phys. Lett. 97, 072902 (2010).

    Article  CAS  Google Scholar 

  45. 45.

    P.C. Goh, K. Yao, and Z. Chen: Titanium diffusion into (K0.5Na0.5)NbO3 thin films deposited on Pt/Ti/SiO2/Si substrates and corresponding effects. J. Am. Ceram. Soc. 92, 1322 (2009).

    CAS  Article  Google Scholar 

  46. 46.

    S. Wu, W. Zhu, L. Liu, D. Shi, S. Zheng, Y. Huang, and L. Fang: Dielectric properties and defect chemistry of WO3-doped K0.5Na0.5NbO3 ceramics. J. Electron. Mater. 43, 1055 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    N.M. Hagh, B. Jadidian, E. Ashbahian, and A. Safari: Lead-free piezoelectric ceramic transducer in the donor-doped K1/2Na1/2NbO3 solid solution system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 214 (2008).

    Article  Google Scholar 

  48. 48.

    T. Shinjiro and N. Kunihiro: Influence of mixing condition and nonstoichiometry on piezoelectric properties of (K,Na,Pb)NbO3 ceram. Jpn. J. Appl. Phys. 43, 6711 (2004).

    Article  CAS  Google Scholar 

  49. 49.

    M. Peddigari, S. Thota, and D. Pamu: Dielectric and AC-conductivity studies of Dy2O3 doped (K0.5Na0.5)NbO3 ceramics. AIP Adv. 4, 087113 (2014).

    Article  CAS  Google Scholar 

  50. 50.

    S.J. Zhang and F. Li: High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J. Appl. Phys. 111, 031301 (2012).

    Article  CAS  Google Scholar 

  51. 51.

    S.E. Park and T.R. Shrout: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804 (1997).

    CAS  Article  Google Scholar 

  52. 52.

    Q. Zhang, Y. Zhang, F. Wang, Y. Wang, D. Lin, X. Zhao, H. Luo, W. Ge, and D. Viehland: Enhanced piezoelectric and ferroelectric properties in Mn-doped Na0.5Bi0.5TiO3–BaTiO3 single crystals. Appl. Phys. Lett. 95, 102904 (2009).

    Article  CAS  Google Scholar 

  53. 53.

    R. Sun, X. Zhao, Q. Zhang, B. Fang, H. Zhang, X. Li, D. Lin, S. Wang, and H. Luo: Growth and orientation dependence of electrical properties of 0.92Na0.5Bi0.5TiO3–0.08K0.5Bi0.5TiO3 lead-free piezoelectric single crystal. J. Appl. Phys. 109, 124113 (2011).

    Article  CAS  Google Scholar 

  54. 54.

    G.L. Messing, S. Trolier-McKinstry, E.M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P.W. Rehrig, K.B. Eitel, E. Suvaci, M. Seabaugh, and K.S. Oh: Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State 29, 45 (2004).

    CAS  Article  Google Scholar 

  55. 55.

    Y.K. Yan, K.H. Cho, and S. Priya: Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)–PbZrO3–PbTiO3 textured ceramics. Appl. Phys. Lett. 100, 132908 (2012).

    Article  CAS  Google Scholar 

  56. 56.

    Y.K. Yan, K.H. Cho, D. Maurya, A. Kumar, S. Kalinin, A. Khachaturyan, and S. Priya: Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 piezoelectric ceramics. Appl. Phys. Lett. 102, 042903 (2013).

    Article  CAS  Google Scholar 

  57. 57.

    Y. Yan, Y. Zhou, and S. Priya: Enhanced electromechanical coupling in Pb(Mg1/3Nb2/3)O3–PbTiO3 〈001〉C radially textured cylinders. Appl. Phys. Lett. 104, 012910 (2014).

    Article  CAS  Google Scholar 

  58. 58.

    D. Maurya, Y. Zhou, Y. Yan, and S. Priya: Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response. J. Mater. Chem. C 1, 2102 (2013).

    CAS  Article  Google Scholar 

  59. 59.

    R.A. Wolf and S. Trolier-McKinstry: Temperature dependence of the piezoelectric response in lead zirconate titanate films. J. Appl. Phys. 95, 1397 (2004).

    CAS  Article  Google Scholar 

  60. 60.

    R. Zuo, C. Ye, X. Fang, and J. Li: Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28, 871 (2008).

    CAS  Article  Google Scholar 

  61. 61.

    F-F. Guo, B. Yang, S-T. Zhang, X. Liu, L-M. Zheng, Z. Wang, F-M. Wu, D-L. Wang, and W-W. Cao: Morphotropic phase boundary and electric properties in (1−x)Bi0.5Na0.5TiO3x BiCoO3 lead-free piezoelectric ceramics. J. Appl. Phys. 111, 124113 (2012).

    Article  CAS  Google Scholar 

  62. 62.

    Y.S. Sung and M.H. Kim: Effects of B-site donor and acceptor doping in Pb-free (Bi0.5Na0.5)TiO3 ceramics. In Ferroelectrics, I. Coondoo, ed. (InTech, London, 2010); p. 450.

    Google Scholar 

  63. 63.

    Y. Guo, M. Gu, H. Luo, Y. Liu, and R.L. Withers: Composition-induced antiferroelectric phase and giant strain in lead-free (Nay, Biz)Ti1−xO3(1−x)x BaTiO3 ceramics. Phys. Rev. B 83, 054118 (2011).

    Article  CAS  Google Scholar 

  64. 64.

    W. Ge, J. Li, D. Viehland, Y. Chang, and G.L. Messing: Electric-field-dependent phase volume fractions and enhanced piezoelectricity near the polymorphic phase boundary of (K0.5Na0.5)1−xLixNbO3 textured ceramics. Phys. Rev. B 83, 224110 (2011).

    Article  CAS  Google Scholar 

  65. 65.

    S-T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rödel: Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007).

    Article  CAS  Google Scholar 

  66. 66.

    M. Guennou, M. Savinov, J. Drahokoupil, H. Luo, and J. Hlinka: Piezoelectric properties of tetragonal single-domain Mn-doped NBT-6% BT single crystals. Appl. Phys. A 116, 225 (2013).

    Article  CAS  Google Scholar 

  67. 67.

    H. Zhang, H. Deng, C. Chen, L. Li, D. Lin, X. Li, X. Zhao, H. Luo, and J. Yan: Chemical nature of giant strain in Mn-doped 0.94(Na0.5Bi0.5)TiO3–0.06BaTiO3 lead-free ferroelectric single crystals. Scr. Mater. 75, 50 (2014).

    CAS  Article  Google Scholar 

  68. 68.

    X. Ren: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91 (2004).

    CAS  Article  Google Scholar 

  69. 69.

    G. Wenwei, L. Hong, Z. Xiangyong, F. Bijun, L. Xiaobing, W. Feifei, Z. Dan, Y. Ping, P. Xiaoming, L. Di, and L. Haosu: Crystal growth and high piezoelectric performance of 0.95Na0.5Bi0.5TiO3–0.05BaTiO3 lead-free ferroelectric materials. J. Phys. D: Appl. Phys. 41, 115403 (2008).

    Article  CAS  Google Scholar 

  70. 70.

    S. Kwon, E.M. Sabolsky, G.L. Messing, and S. Trolier-McKinstry: High strain, 〈001〉 textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics: Templated grain growth and piezoelectric properties. J. Am. Ceram. Soc. 88, 312 (2005).

    CAS  Article  Google Scholar 

  71. 71.

    D. Maurya, Y. Zhou, Y. Wang, Y. Yan, J. Li, D. Viehland, and S. Priya: Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3–BaTiO3–Na0.5Bi0.5TiO3 piezoelectric materials. Sci. Rep. 5, 8595 (2015).

    CAS  Article  Google Scholar 

  72. 72.

    Y. Yan, J.E. Zhou, D. Maurya, Y.U. Wang, and S. Priya: Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material. Nat. Commun. 7, 13089 (2016).

    CAS  Article  Google Scholar 

  73. 73.

    J.E. Zhou, Y. Yan, S. Priya, and Y.U. Wang: Computational study of textured ferroelectric polycrystals: Dielectric and piezoelectric properties of template-matrix composites. J. Appl. Phys. 121, 024101 (2017).

    Article  CAS  Google Scholar 

  74. 74.

    L.Q. Chen: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113 (2002).

    CAS  Article  Google Scholar 

  75. 75.

    L.Q. Chen: Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review. J. Am. Ceram. Soc. 91, 1835 (2008).

    CAS  Article  Google Scholar 

  76. 76.

    F. Gao, X-C. Liu, C-S. Zhang, L-H. Cheng, and C-S. Tian: Fabrication and electrical properties of textured (Na,K)0.5Bi0.5TiO3 ceramics by reactive-templated grain growth. Ceram. Interfaces 34, 403 (2008).

    CAS  Article  Google Scholar 

  77. 77.

    H. Zou, Y. Sui, X. Zhu, B. Liu, J. Xue, and J. Zhang: Texture development and enhanced electromechanical properties in 〈001〉-textured BNT-based materials. Mater. Lett. 184, 139 (2016).

    CAS  Article  Google Scholar 

  78. 78.

    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura: Lead-free piezoceramics. Nature 432, 84 (2004).

    CAS  Article  Google Scholar 

  79. 79.

    Y. Chang, S.F. Poterala, Z. Yang, S. Trolier-McKinstry, and G.L. Messing: 〈001〉 textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Appl. Phys. Lett. 95, 232905 (2009).

    Article  CAS  Google Scholar 

  80. 80.

    Y. Chang, S. Poterala, Z. Yang, and G.L. Messing: Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics. J. Am. Ceram. Soc. 94, 2494 (2011).

    CAS  Article  Google Scholar 

  81. 81.

    A. Hussain, J.S. Kim, T.K. Song, M.H. Kim, W.J. Kim, and S.S. Kim: Fabrication of textured KNNT ceramics by reactive template grain growth using NN templates. Curr. Appl. Phys. 13, 1055 (2013).

    Article  Google Scholar 

  82. 82.

    H. Takao, Y. Saito, Y. Aoki, and K. Horibuchi: Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. J. Am. Ceram. Soc. 89, 1951 (2006).

    CAS  Article  Google Scholar 

  83. 83.

    Y. Li, C. Hui, M. Wu, Y. Li, and Y. Wang: Textured (K0.5Na0.5)NbO3 ceramics prepared by screen-printing multilayer grain growth technique. Ceram. Int. 38, S283 (2012).

    CAS  Article  Google Scholar 

  84. 84.

    H.J. Cho, M-H. Kim, T.K. Song, J.S. Lee, and J-H. Jeon: Piezoelectric and ferroelectric properties of textured (Na0.50K0.47Li0.03)(Nb0.8Ta0.2)O3 ceramics by using template grain growth method. J. Electroceram. 30, 72 (2013).

    CAS  Article  Google Scholar 

  85. 85.

    J. Hao, C. Ye, B. Shen, and J. Zhai: Enhanced piezoelectric properties of 〈001〉 textured lead-free (KxNa1−x)0.946Li0.054NbO3 ceramics with large strain. Phys. Status Solidi A 209, 1343 (2012).

    CAS  Article  Google Scholar 

  86. 86.

    S. Gupta, A. Belianinov, M.B. Okatan, S. Jesse, S.V. Kalinin, and S. Priya: Fundamental limitation to the magnitude of piezoelectric response of 〈001〉pc textured K0.5Na0.5NbO3 ceramic. Appl. Phys. Lett. 104, 172902 (2014).

    Article  CAS  Google Scholar 

  87. 87.

    W. Bai, D. Chen, P. Li, B. Shen, J. Zhai, and Z. Ji: Enhanced electromechanical properties in 〈00l〉-textured (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics. Ceram. Int. 42, 3429 (2016).

    CAS  Article  Google Scholar 

  88. 88.

    S. Ye, J. Fuh, L. Lu, Y-l. Chang, and J-R. Yang: Structure and properties of hot-pressed lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics. RSC Adv. 3, 20693 (2013).

    CAS  Article  Google Scholar 

  89. 89.

    J. Schultheiß, O. Clemens, S. Zhukov, H. von Seggern, W. Sakamoto, and J. Koruza: Effect of degree of crystallographic texture on ferro- and piezoelectric properties of Ba0.85Ca0.15TiO3 piezoceramics. J. Am. Ceram. Soc. 100, 2098 (2017).

    Article  CAS  Google Scholar 

  90. 90.

    J. Yang, Q. Yang, Y. Li, and Y. Liu: Growth mechanism and enhanced electrical properties of K0.5Na0.5NbO3-based lead-free piezoelectric single crystals grown by a solid-state crystal growth method. J. Eur. Ceram. Soc. 36, 541 (2016).

    CAS  Article  Google Scholar 

  91. 91.

    J. Yang, F. Zhang, Q. Yang, Z. Liu, Y. Li, Y. Liu, and Q. Zhang: Large piezoelectric properties in KNN-based lead-free single crystals grown by a seed-free solid-state crystal growth method. Appl. Phys. Lett. 108, 182904 (2016).

    Article  CAS  Google Scholar 

  92. 92.

    J. Song, C. Hao, Y. Yan, J. Zhang, L. Li, and M. Jiang: Enhanced piezoelectric property and microstructure of large CaZrO3-doped Na0.5K0.5NbO3-based single crystal with 20 mm over. Mater. Lett. 204, 19 (2017).

    CAS  Article  Google Scholar 

  93. 93.

    M. Jiang, C.A. Randall, H. Guo, G. Rao, R. Tu, Z. Gu, G. Cheng, X. Liu, J. Zhang, and Y. Li: Seed-free solid-state growth of large lead-free piezoelectric single crystals: (Na1/2K1/2)NbO3. J. Am. Ceram. Soc. 98, 2988 (2015).

    CAS  Article  Google Scholar 

  94. 94.

    K-S. Moon, D. Rout, H-Y. Lee, and S-J.L. Kang: Solid state growth of Na1/2Bi1/2TiO3–BaTiO3 single crystals and their enhanced piezoelectric properties. J. Cryst. Growth 317, 28 (2011).

    CAS  Article  Google Scholar 

  95. 95.

    S. Priya: Criterion for material selection in design of bulk piezoelectric energy harvesters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2610 (2010).

    Article  Google Scholar 

  96. 96.

    Y. Yan, K-H. Cho, D. Maurya, A. Kumar, S. Kalinin, A. Khachaturyan, and S. Priya: Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics, Appl. Phys. Lett. 102, 042903 (2013).

    Article  CAS  Google Scholar 

  97. 97.

    C-W. Ahn, J-J. Choi, J. Ryu, W-H. Yoon, B-D. Hahn, J-W. Kim, J-H. Choi, and D-S. Park: Composition design rule for energy harvesting devices in piezoelectric perovskite ceramics. Mater. Lett. 141, 323 (2015).

    CAS  Article  Google Scholar 

  98. 98.

    A. Holden, P. Singer, and P. Morrison: Crystals and Crystal Growing (Anchor Books-Doubleday, New York, 1960).

    Google Scholar 

  99. 99.

    J.J. Gilman: The Art and Science of Growing Crystals (Wiley, New York, 1963).

    Google Scholar 

  100. 100.

    H.Y. Lee: 6-Development of high-performance piezoelectric single crystals by using solid-state single crystal growth (SSCG) method. In Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Z-G. Ye, ed. (Woodhead Publishing, Cambridge, 2008); p. 158.

    Google Scholar 

  101. 101.

    S-J.L. Kang, J-H. Park, S-Y. Ko, and H-Y. Lee: Solid-state conversion of single crystals: The principle and the state-of-the-art. J. Am. Ceram. Soc. 98, 347 (2015).

    CAS  Article  Google Scholar 

  102. 102.

    S-J.L. Kang: 15-grain shape and grain growth in a liquid matrix. In Sintering, Suk-Joong L. Kang, ed. (Butterworth-Heinemann, Oxford, 2005); p. 205.

    Google Scholar 

  103. 103.

    J. Ryu, J-E. Kang, Y. Zhou, S-Y. Choi, W-H. Yoon, D-S. Park, J-J. Choi, B-D. Hahn, C-W. Ahn, J-W. Kim, Y-D. Kim, S. Priya, S.Y. Lee, S. Jeong, and D-Y. Jeong: Ubiquitous magneto-mechano-electric generator. Energy Environ. Sci. 8, 2402 (2015).

    CAS  Article  Google Scholar 

  104. 104.

    S.J.L. Kang: Boundary structure-dependent grain growth behavior in polycrystals: Model and principle. Mater. Sci. Forum 753, 377 (2013).

    Article  CAS  Google Scholar 

  105. 105.

    S-M. An, B-K. Yoon, S-Y. Chung, and S-J.L. Kang: Nonlinear driving force–velocity relationship for the migration of faceted boundaries. Acta Mater. 60, 4531 (2012).

    CAS  Article  Google Scholar 

  106. 106.

    S-J.L. Kang, M-G. Lee, and S-M. An: Microstructural evolution during sintering with control of the interface structure. J. Am. Ceram. Soc. 92, 1464 (2009).

    CAS  Article  Google Scholar 

  107. 107.

    S-H. Jung and S-J.L. Kang: Repetitive grain growth behavior with increasing temperature and grain boundary roughening in a model nickel system. Acta Mater. 69, 283 (2014).

    CAS  Article  Google Scholar 

  108. 108.

    S-M. An and S-J.L. Kang: Boundary structural transition and grain growth behavior in BaTiO3 with Nd2O3 doping and oxygen partial pressure change. Acta Mater. 59, 1964 (2011).

    CAS  Article  Google Scholar 

  109. 109.

    T. Yamamoto and T. Sakuma: Fabrication of barium titanate single crystals by solid-state grain growth. J. Am. Ceram. Soc. 77, 1107 (1994).

    CAS  Article  Google Scholar 

  110. 110.

    J.G. Fisher, A. Benčan, M. Kosec, S. Vernay, and D. Rytz: Growth of dense single crystals of potassium sodium niobate by a combination of solid-state crystal growth and hot pressing. J. Am. Ceram. Soc. 91, 1503 (2008).

    CAS  Article  Google Scholar 

  111. 111.

    J.G. Fisher, A. Benčan, J. Holc, M. Kosec, S. Vernay, and D. Rytz: Growth of potassium sodium niobate single crystals by solid state crystal growth. J. Cryst. Growth 303, 487 (2007).

    CAS  Article  Google Scholar 

  112. 112.

    J.G. Fisher, A. Benčan, J. Bernard, J. Holc, M. Kosec, S. Vernay, and D. Rytz: Growth of (Na, K, Li)(Nb, Ta)O3 single crystals by solid state crystal growth. J. Eur. Ceram. Soc. 27, 4103 (2007).

    CAS  Article  Google Scholar 

  113. 113.

    J-H. Park, H-Y. Lee, and S-J.L. Kang: Solid-state conversion of (Na1/2Bi1/2)TiO3–BaTiO3–(K1/2Na1/2)NbO3 single crystals and their piezoelectric properties. Appl. Phys. Lett. 104, 222910 (2014).

    Article  CAS  Google Scholar 

  114. 114.

    V. Annapureddy, M. Kim, H. Palneedi, H-Y. Lee, S-Y. Choi, W-H. Yoon, D-S. Park, J-J. Choi, B-D. Hahn, C-W. Ahn, J-W. Kim, D-Y. Jeong, and J. Ryu: Low-loss piezoelectric single-crystal fibers for enhanced magnetic energy harvesting with magnetoelectric composite. Adv. Energy Mater. 6, 1601244 (2016).

    Article  CAS  Google Scholar 

  115. 115.

    S-Y. Ko, J-H. Park, I-W. Kim, S-S. Won, S-Y. Chung, and S-J.L. Kang: Improved solid-state conversion and piezoelectric properties of 90Na1/2Bi1/2TiO3–5BaTiO3–5K1/2Na1/2NbO3 single crystals. J. Eur. Ceram. Soc. 37, 407 (2017).

    CAS  Article  Google Scholar 

  116. 116.

    J-H. Park and S-J.L. Kang: Solid-state conversion of (94 −x)(Na1/2Bi1/2)TiO3–6BaTiO3x (K1/2Na1/2)NbO3 single crystals and their enhanced converse piezoelectric properties. AIP Adv. 6, 015310 (2016).

    Article  CAS  Google Scholar 

  117. 117.

    H. Palneedi, V. Annapureddy, H-Y. Lee, J-J. Choi, S-Y. Choi, S-Y. Chung, S-J.L. Kang, and J. Ryu: Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT–BCT single crystals. J. Asian. Ceram. Soc. 5, 36 (2017).

    Article  Google Scholar 

  118. 118.

    G-T. Hwang, J. Yang, S.H. Yang, H-Y. Lee, M. Lee, D.Y. Park, J.H. Han, S.J. Lee, C.K. Jeong, J. Kim, K-I. Park, and K.J. Lee: A reconfigurable rectified flexible energy harvester via solid-state single crystal grown PMN–PZT. Adv. Energy Mater. 5, 1500051 (2015).

    Article  CAS  Google Scholar 

  119. 119.

    G.T. Hwang, M. Byun, C.K. Jeong, and K.J. Lee: Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthcare Mater. 4, 646 (2015).

    CAS  Article  Google Scholar 

  120. 120.

    Q. Shi, T. Wang, and C. Lee: MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices. Sci. Rep. 6, 24946 (2016).

    CAS  Article  Google Scholar 

  121. 121.

    M. Zhang, T. Gao, J. Wang, J. Liao, Y. Qiu, Q. Yang, H. Xue, Z. Shi, Y. Zhao, Z. Xiong, and L. Chen: A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy 13, 298 (2015).

    CAS  Article  Google Scholar 

  122. 122.

    R.M. Collin and R.W. Collin: Energy Choices: How to Power the Future (Praeger, Santa Barbara, 2014).

    Google Scholar 

  123. 123.

    S. Roundy, P.K. Wright, and J. Rabaey: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131 (2003).

    Article  Google Scholar 

  124. 124.

    M.F.B.A. Rahman and K.S. Leong: Investigation of useful ambient vibration sources for the application of energy harvesting. In Proceedings of 2011 IEEE Student Conference on Research and Development (SCOReD 2011) (Cyberjaya, 2011); p. 391.

  125. 125.

    T.V. Galchev, J. McCullagh, R.L. Peterson, and K. Najafi: Harvesting traffic-induced vibrations for structural health monitoring of bridges. J. Micromech. Microeng. 21, 104005 (2011).

    Article  Google Scholar 

  126. 126.

    Y. Zhou, D.J. Apo, M. Sanghadasa, M. Bichurin, V.M. Petrov, and S. Priya: 7-Magnetoelectric energy harvester. In Composite Magnetoelectrics, Gopalan Srinivasan, Shashank Priya, Nian X. Sun, eds. (Woodhead Publishing, New York, 2015); p. 161.

    Google Scholar 

  127. 127.

    C. Boughey and S. Kar-Narayan: Energy harvesting. In Magnetoelectric Polymer-Based Composites, Senentxu Lanceros-Méndez Pedro Martins, eds. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2017); p. 197.

    Google Scholar 

  128. 128.

    Y.K. Tan: Energy Harvesting Autonomous Sensor Systems: Design, Analysis, and Practical Implementation (Taylor & Francis, Boca Raton, 2013).

    Google Scholar 

  129. 129.

    V. Annapureddy, H.Y. Lee, W-H. Yoon, H-J. Woo, J-H. Lee, H. Palneedi, H-J. Kim, J-J. Choi, D-Y. Jeong, S.N. Yi, and J. Ryu: Enhanced magnetic energy harvesting properties of magneto-mechano-electric generator by tailored geometry. Appl. Phys. Lett. 109, 093901 (2016).

    Article  CAS  Google Scholar 

  130. 130.

    S. Dong, J. Zhai, J.F. Li, D. Viehland, and S. Priya: Multimodal system for harvesting magnetic and mechanical energy. Appl. Phys. Lett. 93, 103511 (2008).

    Article  CAS  Google Scholar 

  131. 131.

    H.A. Sodano, G. Park, and D.J. Inman: Estimation of electric charge output for piezoelectric energy harvesting. Strain 40, 49 (2004).

    Article  Google Scholar 

  132. 132.

    A. Erturk and D.J. Inman: Electromechanical modeling of cantilevered piezoelectric energy harvesters for persistent base motions. In Energy Harvesting Technologies, S. Priya and D.J. Inman, eds. (Springer, New York, 2009).

    Google Scholar 

  133. 133.

    R. Sriramdas: Vibrational energy harvesting: Design, performance and scaling analysis. In Centre for Nano Science and Engineering (Indian Institute of Science, Bangalore, 2017).

    Google Scholar 

  134. 134.

    R. Sriramdas, S. Chiplunkar, R.M. Cuduvally, and R. Pratap: Performance enhancement of piezoelectric energy harvesters using multilayer and multistep beam configurations. IEEE Sensor. J. 15, 3338 (2015).

    Article  Google Scholar 

  135. 135.

    F.D. Ma, Y.M. Jin, Y.U. Wang, S.L. Kampe, and S. Dong: Phase field modeling and simulation of particulate magnetoelectric composites: Effects of connectivity, conductivity, poling and bias field. Acta Mater. 70, 45 (2014).

    CAS  Article  Google Scholar 

  136. 136.

    C-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).

    Article  CAS  Google Scholar 

  137. 137.

    W. Eerenstein, N.D. Mathur, and J.F. Scott: Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).

    CAS  Article  Google Scholar 

  138. 138.

    X. Yan, M. Zheng, Y. Hou, and M. Zhu: Composition-driven phase boundary and its energy harvesting performance of BCZT lead–free piezoelectric ceramic. J. Eur. Ceram. Soc. 37, 2583 (2017).

    CAS  Article  Google Scholar 

  139. 139.

    M. Zheng, Y. Hou, X. Yan, L. Zhang, and M. Zhu: A highly dense structure boosts energy harvesting and cycling reliabilities of a high-performance lead-free energy harvester. J. Mater. Chem. C 5, 7862 (2017).

    CAS  Article  Google Scholar 

  140. 140.

    A.G. Akyurekli, M. Gurbuz, M. Gul, H. Gulec, and A. Dogan: Energy harvesting potential of lead free NBT–BZT piezoelectric ceramics. In 2014 Joint IEEE International Symposium on the Applications of Ferroelectric, International Workshop on Acoustic Transduction Materials and Devices & Workshop on Piezoresponse Force Microscopy (Sate College, Pennsylvania, 2014); p. 1.

    Google Scholar 

  141. 141.

    M. Le Van, H. Motoaki, H. Fumimasa, S. Kenji, M. Tomoyoshi, and K. Hiroki: Bulk micromachined energy harvesters employing (K, Na)NbO3 thin film. J. Micromech. Microeng. 23, 035029 (2013).

    Article  CAS  Google Scholar 

  142. 142.

    Y. Takeshi, M. Shuichi, W. Keisuke, K. Kento, and F. Norifumi: Piezoelectric vibrational energy harvester using lead-free ferroelectric BiFeO 3 films. Appl. Phys. Express 6, 051501 (2013).

    Article  CAS  Google Scholar 

  143. 143.

    I. Kanno, T. Ichida, K. Adachi, H. Kotera, K. Shibata, and T. Mishima: Power-generation performance of lead-free (K,Na)NbO3 piezoelectric thin-film energy harvesters. Sens. Actuators, A 179, 132 (2012).

    CAS  Article  Google Scholar 

  144. 144.

    S.H. Kim, A. Leung, C.Y. Koo, L. Kuhn, W.Y. Jiang, D.J. Kim, and A.I. Kingon: Lead-free (Na0.5K0.5)(Nb0.95Ta0.05)O3–BiFeO3 thin films for MEMS piezoelectric vibration energy harvesting devices. Mater. Lett. 69, 24 (2012).

    CAS  Article  Google Scholar 

  145. 145.

    S.S. Won, J. Lee, V. Venugopal, D-J. Kim, J. Lee, I.W. Kim, A.I. Kingon, and S-H. Kim: Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications. Appl. Phys. Lett. 108, 232908 (2016).

    Article  CAS  Google Scholar 

  146. 146.

    A. Marin: Mechanical Energy Harvesting for Powering Distributed Sensors and Recharging Storage Systems, in Mechanical Engineering (Virginia Polytechnic Institute and State University, Blacksburg, 2013); p. 280.

    Google Scholar 

  147. 147.

    N. Sharpes, A. Abdelkefi, and S. Priya: Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters. Appl. Phys. Lett. 107, 093901 (2015).

    Article  CAS  Google Scholar 

  148. 148.

    R. Sriramdas and R. Pratap: Scaling and performance analysis of MEMS piezoelectric energy harvesters. J. Microelectromech. Syst. 26, 679 (2017).

    CAS  Article  Google Scholar 

  149. 149.

    X. Wang: Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1, 13 (2012).

    CAS  Article  Google Scholar 

  150. 150.

    G. Zhu, R. Yang, S. Wang, and Z.L. Wang: Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10, 3151 (2010).

    CAS  Article  Google Scholar 

  151. 151.

    B-Y. Kim, W-H. Lee, H-G. Hwang, D-H. Kim, J-H. Kim, S-H. Lee, and S. Nahm: Resistive switching memory integrated with nanogenerator for self-powered bioimplantable devices. Adv. Funct. Mater. 26, 5211 (2016).

    CAS  Article  Google Scholar 

  152. 152.

    K-I. Park, S. Xu, Y. Liu, G-T. Hwang, S-J.L. Kang, Z.L. Wang, and K.J. Lee: Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939 (2010).

    CAS  Article  Google Scholar 

  153. 153.

    C.K. Jeong, J.H. Han, H. Palneedi, H. Park, G-T. Hwang, B. Joung, S-G. Kim, H.J. Shin, I-S. Kang, J. Ryu, and K.J. Lee: Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 5, 74102 (2017).

    Article  CAS  Google Scholar 

  154. 154.

    B-Y. Kim, I-T. Seo, Y-S. Lee, J-S. Kim, S. Nahm, C-Y. Kang, S-J. Yoon, J-H. Paik, and Y-H. Jeong: High-performance (Na0.5K0.5)NbO3 thin film piezoelectric energy harvester. J. Am. Ceram. Soc. 98, 119 (2015).

    CAS  Article  Google Scholar 

  155. 155.

    M.K. Gupta, S-W. Kim, and B. Kumar: Flexible high-performance lead-free Na0.47K0.47Li0.06NbO3 microcube-structure-based piezoelectric energy harvester. ACS Appl. Mater. Interfaces 8, 1766 (2016).

    CAS  Article  Google Scholar 

  156. 156.

    Y.L. Zhao, Q.L. Liao, G.J. Zhang, Z. Zhang, Q.J. Liang, X.Q. Liao, and Y. Zhang: High output piezoelectric nanocomposite generators composed of oriented BaTiO3NPs@PVDF. Nano Energy 11, 719 (2015).

    CAS  Article  Google Scholar 

  157. 157.

    C.K. Jeong, K.I. Park, J. Ryu, G.T. Hwang, and K.J. Lee: Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv. Funct. Mater. 24, 2620 (2014).

    CAS  Article  Google Scholar 

  158. 158.

    C. Baek, J.H. Yun, J.E. Wang, C.K. Jeong, K.J. Lee, K.I. Park, and D.K. Kim: A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle-polymer composite. Nanoscale 8, 17632 (2016).

    CAS  Article  Google Scholar 

  159. 159.

    C.K. Jeong, I. Kim, K-I. Park, M.H. Oh, H. Paik, G-T. Hwang, K. No, Y.S. Nam, and K.J. Lee: Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 7, 11016 (2013).

    CAS  Article  Google Scholar 

  160. 160.

    D.B. Deutz, N.T. Mascarenhas, J.B.J. Schelen, D.M. de Leeuw, S. van der Zwaag, and P. Groen: Flexible piezoelectric touch sensor by alignment of lead-free alkaline niobate microcubes in PDMS. Adv. Funct. Mater. 27, 1700728 (2017).

    Article  CAS  Google Scholar 

  161. 161.

    M.R. Joung, H.B. Xu, I.T. Seo, D.H. Kim, J. Hur, S. Nahm, C.Y. Kang, S.J. Yoon, and H.M. Park: Piezoelectric nanogenerators synthesized using KNbO3 nanowires with various crystal structures. J. Mater. Chem. A 2, 18547 (2014).

    CAS  Article  Google Scholar 

  162. 162.

    B. Xu, H. Chakraborty, R.C. Remsing, M.L. Klein, and S. Ren: A free-standing molecular spin–charge converter for ubiquitous magnetic-energy harvesting and sensing. Adv. Mater. 29, 1605150 (2017).

    Article  CAS  Google Scholar 

  163. 163.

    M. Gao, L. Li, W. Li, H. Zhou, and Y. Song: Direct writing of patterned, lead-free nanowire aligned flexible piezoelectric device. Adv. Sci. 3, 1600120 (2016).

    Article  CAS  Google Scholar 

  164. 164.

    B.Y. Lee, J.X. Zhang, C. Zueger, W.J. Chung, S.Y. Yoo, E. Wang, J. Meyer, R. Ramesh, and S.W. Lee: Virus-based piezoelectric energy generation. Nat. Nanotechnol. 7, 351 (2012).

    CAS  Article  Google Scholar 

  165. 165.

    W.S. Williams, L. Breger, and M. Johnson: Piezoelectric response of bone. Bull. Am. Phys. Soc. 18, 320 (1973).

    Google Scholar 

  166. 166.

    M.M. Alam and D. Mandal: Native cellulose microfiber-based hybrid piezoelectric generator for mechanical energy harvesting utility. ACS Appl. Mater. Interfaces 8, 1555 (2016).

    CAS  Article  Google Scholar 

  167. 167.

    H. Fashandi, M.M. Abolhasani, P. Sandoghdar, N. Zohdi, Q.X. Li, and M. Naebe: Morphological changes towards enhancing piezoelectric properties of PVDF electrical generators using cellulose nanocrystals. Cellulose 23, 3625 (2016).

    CAS  Article  Google Scholar 

  168. 168.

    A. Koka, Z. Zhou, H.X. Tang, and H.A. Sodano: Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications. Nanotechnology 25, 375603 (2014).

    Article  CAS  Google Scholar 

  169. 169.

    Y.H. He, Z. Wang, X.K. Hu, Y.X. Cai, L.Y. Li, Y.H. Gao, X.H. Zhang, Z.B. Huang, Y.M. Hu, and H.S. Gu: Orientation-dependent piezoresponse and high-performance energy harvesting of lead-free (K,Na)NbO3 nanorod arrays. RSC Adv. 7, 16908 (2017).

    CAS  Article  Google Scholar 

  170. 170.

    P.G. Kang, B.K. Yun, K.D. Sung, T.K. Lee, M. Lee, N. Lee, S.H. Oh, W. Jo, H.J. Seog, C.W. Ahn, I.W. Kim, and J.H. Jung: Piezoelectric power generation of vertically aligned lead-free (K,Na)NbO3 nanorod arrays. RSC Adv. 4, 29799 (2014).

    CAS  Article  Google Scholar 

  171. 171.

    H.H. Fan, C.C. Jin, Y. Wang, H.L. Hwang, and Y.F. Zhang: Structural of BCTZ nanowires and high performance BCTZ-based nanogenerator for biomechanical energy harvesting. Ceram. Int. 43, 5875 (2017).

    CAS  Article  Google Scholar 

  172. 172.

    E.L. Tsege, G.H. Kim, V. Annapureddy, B. Kim, H.K. Kim, and Y.H. Hwang: A flexible lead-free piezoelectric nanogenerator based on vertically aligned BaTiO3 nanotube arrays on a Ti-mesh substrate. RSC Adv. 6, 81426 (2016).

    CAS  Article  Google Scholar 

  173. 173.

    G. Liu, P. Ci, and S. Dong: Energy harvesting from ambient low-frequency magnetic field using magneto-mechano-electric composite cantilever. Appl. Phys. Lett. 104, 32908 (2014).

    Article  CAS  Google Scholar 

  174. 174.

    J. Han, J. Hu, Z. Wang, S.X. Wang, and J. He: Enhanced performance of magnetoelectric energy harvester based on compound magnetic coupling effect. J. Appl. Phys. 117, 144502 (2015).

    Article  CAS  Google Scholar 

  175. 175.

    C. Kambale Rahul, J-E. Kang, W-H. Yoon, D-S. Park, J-J. Choi, C-W. Ahn, J-W. Kim, B-D. Hahn, D-Y. Jeong, Y-D. Kim, S. Dong, and J. Ryu: Magneto-mechano-electric (MME) energy harvesting properties of piezoelectric macro-fiber composite/Ni magnetoelectric generator. Energy Harvest. Syst. 1, 3 (2014).

    Google Scholar 

  176. 176.

    A. Lasheras, J. Gutierrez, D. Sousa, M. Silva, P. Martins, S. Lanceros-Mendez, J.M. Barandiaran, D.A. Shishkin, and A.P. Potapov: Energy harvesting device based on a metallic glass/PVDF magnetoelectric laminated composite. Smart Mater. Struct. 24, 65024 (2015).

    Article  CAS  Google Scholar 

  177. 177.

    H-C. Song, H-C. Kim, C-Y. Kang, H-J. Kim, S-J. Yoon, and D-Y. Jeong: Multilayer piezoelectric energy scavenger for large current generation. J. Electroceram. 23, 301 (2009).

    CAS  Article  Google Scholar 

  178. 178.

    S. Roundy and P.K. Wright: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131 (2004).

    Article  Google Scholar 

  179. 179.

    M.R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J.J. Santiago-Avilés: Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST). Sens. Actuators, A 89, 222 (2001).

    CAS  Article  Google Scholar 

  180. 180.

    Y. Yan, A. Marin, Y. Zhou, and S. Priya: Enhanced vibration energy harvesting through multilayer textured Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 piezoelectric ceramics. Energy Harvest. Syst. 1, 189 (2014).

    Google Scholar 

  181. 181.

    M. Evans, K. Aw, and L. Tang: Low frequency energy harvesting using a force amplified piezoelectric stack. In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (Munich, 2017); p. 1568.

  182. 182.

    K. Remick, D. Dane Quinn, D. Michael McFarland, L. Bergman, and A. Vakakis: High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity. J. Sound Vib. 370, 259 (2016).

    Article  Google Scholar 

  183. 183.

    S. Priya: Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19, 167 (2007).

    Article  CAS  Google Scholar 

  184. 184.

    N. Sharpes, D. Vučković, and S. Priya: Floor tile energy harvester for self-powered wireless occupancy sensing. Energy Harvest. Syst. 3, 43 (2016).

    Google Scholar 

  185. 185.

    East Japan Railway Company: Demonstration Experiment of the “Power-Generating Floor” at Tokyo Station, Chiyoda, 2008; p. 3.

  186. 186.

    A. Erturk and D.J. Inman: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009).

    Article  CAS  Google Scholar 

  187. 187.

    Y. Shu and I. Lien: Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 15, 1499 (2006).

    CAS  Article  Google Scholar 

  188. 188.

    R. Harne and K. Wang: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013).

    Article  Google Scholar 

  189. 189.

    D. Zhu, M.J. Tudor, and S.P. Beeby: Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Meas. Sci. Technol. 21, 022001 (2010).

    Article  CAS  Google Scholar 

  190. 190.

    N. Sharpes, A. Abdelkefi, and S. Priya: Comparative analysis of one-dimensional and two-dimensional cantilever piezoelectric energy harvesters. Energy Harvest. Syst. 1, 209 (2014).

    Google Scholar 

  191. 191.

    D.J. Apo, M. Sanghadasa, and S. Priya: Low frequency arc-based MEMS structures for vibration energy harvesting. In 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (IEEE, Suzhou, 2013); p. 615.

    Google Scholar 

  192. 192.

    D. Berdy, B. Jung, J. Rhoads, and D. Peroulis: Increased-bandwidth, meandering vibration energy harvester. In 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS) (IEEE, Beijing, 2011); p. 2638.

    Google Scholar 

  193. 193.

    M.A. Karami, B. Yardimoglu, and D. Inman: Coupled out of plane vibrations of spiral beams. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (The American Institute of Aeronautics and Astronautics, Inc., Reston, VA, 2009).

    Google Scholar 

  194. 194.

    D.J. Apo, M. Sanghadasa, and S. Priya: Vibration modeling of arc-based cantilevers for energy harvesting applications. Energy Harvest. Syst. 1, 1 (2014).

    Article  Google Scholar 

  195. 195.

    D.F. Berdy, B. Jung, J.F. Rhoads, and D. Peroulis: Wide-bandwidth, meandering vibration energy harvester with distributed circuit board inertial mass. Sens. Actuators, A 188, 148 (2012).

    CAS  Article  Google Scholar 

  196. 196.

    H. Hu, H. Xue, and Y. Hu: A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1177 (2007).

    Article  Google Scholar 

  197. 197.

    Y. Hu and Y. Xu: A wideband vibration energy harvester based on a folded asymmetric gapped cantilever. Appl. Phys. Lett. 104, 053902 (2014).

    Article  CAS  Google Scholar 

  198. 198.

    A.M. Karami and D.J. Inman: Parametric study of zigzag microstructure for vibrational energy harvesting. J. Microelectromech. Syst. 21, 145 (2012).

    Article  Google Scholar 

  199. 199.

    M.A. Karami and D.J. Inman: Electromechanical modeling of the low-frequency zigzag micro-energy harvester. J. Intell. Mater. Syst. Struct. 22, 271 (2011).

    Article  Google Scholar 

  200. 200.

    X. Chen, J. Wu, X. Cheng, B. Wu, W. Wu, D. Xiao, and J. Zhu: Piezoelectric properties of [Li0.03(K0.48Na0.52)0.97](Nb0.97Sb0.03)O3–(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 12, 752 (2012).

    Article  Google Scholar 

  201. 201.

    H. Wu, L. Tang, Y. Yang, and C.K. Soh: A novel two-degrees-of-freedom piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 24, 357 (2013).

    Article  Google Scholar 

  202. 202.

    H. Abdelmoula, N. Sharpes, A. Abdelkefi, H. Lee, and S. Priya: Low-frequency zigzag energy harvesters operating in torsion-dominant mode. Appl. Energy 204, 413 (2017).

    Article  Google Scholar 

  203. 203.

    N. Sharpes, A. Abdelkefi, M. Hajj, J. Heo, K-H. Cho, and S. Priya: Preloaded freeplay wide-bandwidth low-frequency piezoelectric harvesters. Appl. Phys. Lett. 107, 023902 (2015).

    Article  CAS  Google Scholar 

  204. 204.

    G. Frank and W. Peter: Characterization of different beam shapes for piezoelectric energy harvesting. J. Micromech. Microeng. 18, 104013 (2008).

    Article  Google Scholar 

  205. 205.

    M.I. Friswell and S. Adhikari: Sensor shape design for piezoelectric cantilever beams to harvest vibration energy. J. Appl. Phys. 108, 014901 (2010).

    Article  CAS  Google Scholar 

  206. 206.

    D. Benasciutti, L. Moro, S. Zelenika, and E. Brusa: Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst. Technol. 16, 657 (2010).

    Article  Google Scholar 

  207. 207.

    S. Roundy: On the effectiveness of vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 16, 809 (2005).

    Article  Google Scholar 

  208. 208.

    D. Zhu, A. Almusallam, S.P. Beeby, J. Tudor, and N.R. Harris: A bimorph multi-layer piezoelectric vibration energy harvester. In PowerMEMS (Leuven, 2010); p. 335.

  209. 209.

    S.R. Lanceros-Mendez, M.P. Silva, N. Castro, V. Correia, J.G. Rocha, P. Martins, A. Lasheras, and J. Gutierrez: Electronic optimization for an energy harvesting system based on magnetoelectric metglas/poly(vinylidene fluoride)/metglas composites. Smart Mater. Struct. 25, 85028 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

D.M. would like to acknowledge the financial support from Office of Basic Energy Science, Department of Energy, through grant number DE-FG02-06ER46290. H-C.S. and S.P. would like to acknowledge NSF-CREST Grant No. HRD 1547771. M-G.K. was supported through the Air Force Office of Scientific Research (Grant No. FA9550-14-1-0376). N.S. was supported through Office of Naval Research. R.S. and Y.Y. would like to acknowledge financial support through National Science Foundation I/UCRC program. H.-C.S. was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIP) (No. CAP-17-04-KRISS). KIMS and YU teams would like to acknowledge the support from National Research Foundation of Korea (Grant No. NRF-2016R1A2B4011663), the National Research Council of Science & Technology (NST) grant by the Korea government (MSIP) (No. CAP-17-04-KRISS), and the U.S. Office of Naval Research Global (Grant No. N62909-16-1-2135).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Deepam Maurya or Jungho Ryu or Shashank Priya.

Additional information

This article has been updated since original publication. A correction notice detailing the change has also been published at doi:https://doi.org/10.1557/jmr.2018.227.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maurya, D., Peddigari, M., Kang, MG. et al. Lead-free piezoelectric materials and composites for high power density energy harvesting. Journal of Materials Research 33, 2235–2263 (2018). https://doi.org/10.1557/jmr.2018.172

Download citation