Stability of organic solar cells with PCDTBT donor polymer: An interlaboratory study

Abstract

This work is part of the interlaboratory collaboration to study the stability of organic solar cells containing PCDTBT polymer as a donor material. The varieties of the OPV devices with different device architectures, electrode materials, encapsulation, and device dimensions were prepared by seven research laboratories. Sets of identical devices were aged according to four different protocols: shelf lifetime, laboratory weathering under simulated illumination at ambient temperature, laboratory weathering under simulated illumination, and elevated temperature (65 °C) and daylight outdoor weathering under sunlight. The results generated in this study allow us to outline several general conclusions related to PCDTBT-based bulk heterojunction (BHJ) solar cells. The results herein reported can be considered as practical guidance for the realization of stabilization approaches in BHJ solar cells containing PCDTBT.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

References

  1. 1.

    R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, and F.C. Krebs: Roll-to-roll fabrication of polymer solar cells. Mater. Today 15, 36–49 (2012).

    Article  CAS  Google Scholar 

  2. 2.

    H. Youn, H.J. Park, and L.J. Guo: Organic photovoltaic cells: From performance improvement to manufacturing processes. Small 11, 2228–2246 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    A.J. Heeger: Semiconducting polymers: The third generation. Chem. Soc. Rev. 39, 2354–2371 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Available at: http://www.heliatek.com/en/press/press-releases/details/heliatek-sets-new-organic-photovoltaic-world-record-efficiency-of-13-2.

  5. 5.

    J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, and H. Yan: Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou: Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148–7151 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    G. Li, W-H. Chang, and Y. Yang: Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat. Rev. Mater. 2, 17043 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    S. Beaupre and M. Leclerc: PCDTBT: En route for low cost plastic solar cells. J. Mater. Chem. A 1, 11097–11105 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    C.H. Peters, I.T. Sachs-Quintana, J.P. Kastrop, S. Beaupré, M. Leclerc, and M.D. McGehee: High efficiency polymer solar cells with long operating lifetimes. Adv. Energy Mater. 1, 491–494 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    D.H. Wang, J.K. Kim, J.H. Seo, O.O. Park, and J.H. Park: Stability comparison: A PCDTBT/PC71BM bulk-heterojunction versus a P3HT/PC71BM bulk-heterojunction. Sol. Energy Mater. Sol. Cells 101 (Suppl. C), 249–255 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    T. Heumueller, W.R. Mateker, A. Distler, U.F. Fritze, R. Cheacharoen, W.H. Nguyen, M. Biele, M. Salvador, M. von Delius, H-J. Egelhaaf, M.D. McGehee, and C.J. Brabec: Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability. Energy Environ. Sci. 9, 247–256 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    N. Gasparini, M. Salvador, S. Strohm, T. Heumueller, I. Levchuk, A. Wadsworth, J.H. Bannock, J.C. de Mello, H-J. Egelhaaf, D. Baran, I. McCulloch, and C.J. Brabec: Burn-in free nonfullerene-based organic solar cells. Adv. Energy Mater. 7, 1700770 (2017).

    Article  CAS  Google Scholar 

  13. 13.

    O. Synooka, K-R. Eberhardt, C.R. Singh, F. Hermann, G. Ecke, B. Ecker, E. von Hauff, G. Gobsch, and H. Hoppe: Influence of thermal annealing on PCDTBT:PCBM composition profiles. Adv. Energy Mater. 4, 1300981 (2014).

    Article  CAS  Google Scholar 

  14. 14.

    T. Wang, A.J. Pearson, A.D.F. Dunbar, P.A. Staniec, D.C. Watters, H. Yi, A.J. Ryan, R.A.L. Jones, A. Iraqi, and D.G. Lidzey: Correlating structure with function in thermally annealed PCDTBT:PC70BM photovoltaic blends. Adv. Funct. Mater. 22, 1399–1408 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Z. Li, K.H. Chiu, R. Shahid Ashraf, S. Fearn, R. Dattani, H. Cheng Wong, C-H. Tan, J. Wu, J.T. Cabral, and J.R. Durrant: Toward improved lifetimes of organic solar cells under thermal stress: Substrate-dependent morphological stability of PCDTBT:PCBM films and devices. Sci. Rep. 5, 15149 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    J.W. Kingsley, P.P. Marchisio, H. Yi, A. Iraqi, C.J. Kinane, S. Langridge, R.L. Thompson, A.J. Cadby, A.J. Pearson, D.G. Lidzey, R.A.L. Jones, and A.J. Parnell: Molecular weight dependent vertical composition profiles of PCDTBT:PC(71)BM blends for organic photovoltaics. Sci. Rep. 4, 5286 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    A. Katsouras, N. Gasparini, C. Koulogiannis, M. Spanos, T. Ameri, C.J. Brabec, C.L. Chochos, and A. Avgeropoulos: Systematic analysis of polymer molecular weight influence on the organic photovoltaic performance. Macromol. Rapid Commun. 36, 1778–1797 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    P. Cheng, C. Yan, Y. Wu, J. Wang, M. Qin, Q. An, J. Cao, L. Huo, F. Zhang, L. Ding, Y. Sun, W. Ma, and X. Zhan: Alloy acceptor: Superior alternative to PCBM toward efficient and stable organic solar cells. Adv. Mater. 28, 8021–8028 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    W.R. Mateker, I.T. Sachs-Quintana, G.F. Burkhard, R. Cheacharoen, and M.D. McGehee: Minimal long-term intrinsic degradation observed in a polymer solar cell illuminated in an oxygen-free environment. Chem. Mater. 27, 404–407 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    S. Alem, T-Y. Chu, S.C. Tse, S. Wakim, J. Lu, R. Movileanu, Y. Tao, F. Bélanger, D. Désilets, S. Beaupré, M. Leclerc, S. Rodman, D. Waller, and R. Gaudiana: Effect of mixed solvents on PCDTBT:PC70BM based solar cells. Org. Electron. 12, 1788–1793 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    P-K. Shin, P. Kumar, A. Kumar, S. Kannappan, and S. Ochiai: Effects of organic solvents for composite active layer of PCDTBT/PC71BM on characteristics of organic solar cell devices. Int. J. Photoenergy 2014, 8 (2014).

    Article  CAS  Google Scholar 

  22. 22.

    L. Ciammaruchi, F. Brunetti, and I. Visoly-Fisher: Solvent effects on the morphology and stability of PTB7:PCBM based solar cells. Sol. Energy 137 (Suppl. C), 490–499 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    G. Fang, J. Liu, Y. Fu, B. Meng, B. Zhang, Z. Xie, and L. Wang: Improving the nanoscale morphology and processibility for PCDTBT-based polymer solar cells via solvent mixtures. Org. Electron. 13, 2733–2740 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    C.H. Peters, I.T. Sachs-Quintana, W.R. Mateker, T. Heumueller, J. Rivnay, R. Noriega, Z.M. Beiley, E.T. Hoke, A. Salleo, and M.D. McGehee: The mechanism of burn-in loss in a high efficiency polymer solar cell. Adv. Mater. 24, 663–668 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    J. Kong, S. Song, M. Yoo, G.Y. Lee, O. Kwon, J.K. Park, H. Back, G. Kim, S.H. Lee, H. Suh, and K. Lee: Long-term stable polymer solar cells with significantly reduced burn-in loss. Nat. Commun. 5, 5688 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    R. Roesch, K-R. Eberhardt, S. Engmann, G. Gobsch, and H. Hoppe: Polymer solar cells with enhanced lifetime by improved electrode stability and sealing. Sol. Energy Mater. Sol. Cells 117 (Suppl. C), 59–66 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Y. Zhang, E. Bovill, J. Kingsley, A.R. Buckley, H. Yi, A. Iraqi, T. Wang, and D.G. Lidzey: PCDTBT based solar cells: One year of operation under real-world conditions. Sci. Rep. 6, 21632 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    J. Adams, M. Salvador, L. Lucera, S. Langner, G.D. Spyropoulos, F.W. Fecher, M.M. Voigt, S.A. Dowland, A. Osvet, H-J. Egelhaaf, and C.J. Brabec: Water ingress in encapsulated inverted organic solar cells: Correlating infrared imaging and photovoltaic performance. Adv. Energy Mater. 5, 1501065 (2015).

    Article  CAS  Google Scholar 

  29. 29.

    V. Turkovic, S. Engmann, D.A.M. Egbe, M. Himmerlich, S. Krischok, G. Gobsch, and H. Hoppe: Multiple stress degradation analysis of the active layer in organic photovoltaics. Sol. Energy Mater. Sol. Cells 120 (Part B), 654–668 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    E. Voroshazi, I. Cardinaletti, T. Conard, and B.P. Rand: Light-induced degradation of polymer:fullerene photovoltaic devices: An intrinsic or material-dependent failure mechanism? Adv. Energy Mater. 4, 1400848 (2014).

    Article  CAS  Google Scholar 

  31. 31.

    M.O. Reese, S.A. Gevorgyan, M. Jørgensen, E. Bundgaard, S.R. Kurtz, D.S. Ginley, D.C. Olson, M.T. Lloyd, P. Morvillo, E.A. Katz, A. Elschner, O. Haillant, T.R. Currier, V. Shrotriya, M. Hermenau, M. Riede, K.R. Kirov, G. Trimmel, T. Rath, O. Inganäs, F. Zhang, M. Andersson, K. Tvingstedt, M. Lira-Cantu, D. Laird, C. McGuiness, S. Gowrisanker, M. Pannone, M. Xiao, J. Hauch, R. Steim, D.M. DeLongchamp, R. Rösch, H. Hoppe, N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J-B. Bonekamp, A.J.J.M. van Breemen, C. Girotto, E. Voroshazi, and F.C. Krebs: Consensus stability testing protocols for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cells 95, 1253–1267 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    J. Kettle, N. Bristow, D.T. Gethin, Z. Tehrani, O. Moudam, B. Li, E.A. Katz, G.A. dos Reis Benatto, and F.C. Krebs: Printable luminescent down shifter for enhancing efficiency and stability of organic photovoltaics. Sol. Energy Mater. Sol. Cells 144 (Suppl. C), 481–487 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Q. Burlingame, G. Zanotti, L. Ciammaruchi, E.A. Katz, and S.R. Forrest: Outdoor operation of small-molecule organic photovoltaics. Org. Electron. 41 (Suppl. C), 274–279 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    S.A. Gevorgyan, N. Espinosa, L. Ciammaruchi, B. Roth, F. Livi, S. Tsopanidis, S. Zufle, S. Queiros, A. Gregori, G.A.D. Benatto, M. Corazza, M.V. Madsen, M. Hosel, M.J. Beliatis, T.T. Larsen-Olsen, F. Pastorelli, A. Castro, A. Mingorance, V. Lenzi, D. Fluhr, R. Roesch, M.M.D. Ramos, A. Savva, H. Hoppe, L.S.A. Marques, I. Burgues, E. Georgiou, L. Serrano-Lujan, and F.C. Krebs: Baselines for lifetime of organic solar cells. Adv. Energy Mater. 6, 1600910 (2016).

    Article  CAS  Google Scholar 

  35. 35.

    S.A. Gevorgyan, M.V. Madsen, B. Roth, M. Corazza, M. Hösel, R.R. Søndergaard, M. Jørgensen, and F.C. Krebs: Lifetime of organic photovoltaics: Status and predictions. Adv. Energy Mater. 6, 1501208 (2016).

    Article  CAS  Google Scholar 

  36. 36.

    H.J. Son, B. Carsten, I.H. Jung, and L. Yu: Overcoming efficiency challenges in organic solar cells: Rational development of conjugated polymers. Energy Environ. Sci. 5, 8158–8170 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J.P. Rabe, U. Scherf, and D. Neher: Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors. Adv. Funct. Mater. 14, 757–764 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    W. Ma, J.Y. Kim, K. Lee, and A.J. Heeger: Effect of the molecular weight of poly(3-hexylthiophene) on the morphology and performance of polymer bulk heterojunction solar cells. Macromol. Rapid Commun. 28, 1776–1780 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    M. Koppe, C.J. Brabec, S. Heiml, A. Schausberger, W. Duffy, M. Heeney, and I. McCulloch: Influence of molecular weight distribution on the gelation of P3HT and its impact on the photovoltaic performance. Macromolecules 42, 4661–4666 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    R.J. Kline, M.D. McGehee, E.N. Kadnikova, J.S. Liu, J.M.J. Frechet, and M.F. Toney: Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38, 3312–3319 (2005).

    CAS  Article  Google Scholar 

  41. 41.

    Z. Ding, J. Kettle, M. Horie, S.W. Chang, G.C. Smith, A.I. Shames, and E.A. Katz: Efficient solar cells are more stable: The impact of polymer molecular weight on performance of organic photovoltaics. J. Mater. Chem. A 4, 7274–7280 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    L.A. Frolova, N.P. Piven, D.K. Susarova, A.V. Akkuratov, S.D. Babenko, and P.A. Troshin: ESR spectroscopy for monitoring the photochemical and thermal degradation of conjugated polymers used as electron donor materials in organic bulk heterojunction solar cells. Chem. Commun. 51, 2242–2244 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    D.K. Susarova, N.P. Piven, A.V. Akkuratov, L.A. Frolova, M.S. Polinskaya, S.A. Ponomarenko, S.D. Babenko, and P.A. Troshin: ESR spectroscopy as a powerful tool for probing the quality of conjugated polymers designed for photovoltaic applications. Chem. Commun. 51, 2239–2241 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    A.I. Shames, L.N. Inasaridze, A.V. Akkuratov, A.E. Goryachev, E.A. Katz, and P.A. Troshin: Assessing the outdoor photochemical stability of conjugated polymers by EPR spectroscopy. J. Mater. Chem. A 4, 13166–13170 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    T.S. Glen, N.W. Scarratt, H. Yi, A. Iraqi, T. Wang, J. Kingsley, A.R. Buckley, D.G. Lidzey, and A.M. Donald: Dependence on material choice of degradation of organic solar cells following exposure to humid air. J. Polym. Sci., Part B: Polym. Phys. 54, 216–224 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    B. Paci, A. Generosi, V. Rossi Albertini, P. Perfetti, R. de Bettignies, and C. Sentein: Time-resolved morphological study of organic thin film solar cells based on calcium/aluminium cathode material. Chem. Phys. Lett. 461, 77–81 (2008).

    CAS  Article  Google Scholar 

  47. 47.

    Z.Y. Liu, M.M. Tian, and N. Wang: Influences of Alq3 as electron extraction layer instead of Ca on the photo-stability of organic solar cells. J. Power Sources 250, 105–109 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    S. Cros, M. Firon, S. Lenfant, P. Trouslard, and L. Beck: Study of thin calcium electrode degradation by ion beam analysis. Nucl. Instrum. Methods Phys. Res., Sect. B 251, 257–260 (2006).

    CAS  Article  Google Scholar 

  49. 49.

    T.S. Glen, N.W. Scarratt, H. Yi, A. Iraqi, T. Wang, J. Kingsley, A.R. Buckley, D.G. Lidzey, and A.M. Donald: Grain size dependence of degradation of aluminium/calcium cathodes in organic solar cells following exposure to humid air. Sol. Energy Mater. Sol. Cells 140 (Suppl. C), 25–32 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    M.T. Lloyd, D.C. Olson, P. Lu, E. Fang, D.L. Moore, M.S. White, M.O. Reese, D.S. Ginley, and J.W.P. Hsu: Impact of contact evolution on the shelf life of organic solar cells. J. Mater. Chem. 19, 7638–7642 (2009).

    CAS  Article  Google Scholar 

  51. 51.

    N. Karst and J.C. Bernède: On the improvement of the open circuit voltage of plastic solar cells by the presence of a thin aluminium oxide layer at the interface organic/aluminium. Phys. Status Solidi A 203, R70–R72 (2006).

    CAS  Article  Google Scholar 

  52. 52.

    M.T. Lloyd, C.H. Peters, A. Garcia, I.V. Kauvar, J.J. Berry, M.O. Reese, M.D. McGehee, D.S. Ginley, and D.C. Olson: Influence of the hole-transport layer on the initial behavior and lifetime of inverted organic photovoltaics. Sol. Energy Mater. Sol. Cells 95, 1382–1388 (2011).

    CAS  Article  Google Scholar 

  53. 53.

    D.M. Tanenbaum, H.F. Dam, R. Roesch, M. Jorgensen, H. Hoppe, and F.C. Krebs: Edge sealing for low cost stability enhancement of roll-to-roll processed flexible polymer solar cell modules. Sol. Energy Mater. Sol. Cells 97, 157–163 (2012).

    CAS  Article  Google Scholar 

  54. 54.

    Y.W. Zhang, E. Bovill, J. Kingsley, A.R. Buckley, H.N. Yi, A. Iraqi, T. Wang, and D.G. Lidzey: PCDTBT based solar cells: One year of operation under real-world conditions. Sci. Rep. 6, 21632 (2016).

    CAS  Article  Google Scholar 

  55. 55.

    A. Tournebize, P.O. Bussiere, P. Wong-Wah-Chung, S. Therias, A. Rivaton, J.L. Gardette, S. Beaupre, and M. Leclerc: Impact of UV-visible light on the morphological and photochemical behavior of a low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv. Energy Mater. 3, 478–487 (2013).

    CAS  Article  Google Scholar 

  56. 56.

    A. Tournebize, A. Rivaton, J-L. Gardette, C. Lombard, B. Pepin-Donat, S. Beaupre, and M. Leclerc: How photoinduced crosslinking under operating conditions can reduce PCDTBT-based solar cell efficiency and then stabilize it. Adv. Energy Mater. 4, 1 (2014).

    Article  CAS  Google Scholar 

  57. 57.

    L.N. Inasaridze, A.I. Shames, I.V. Martynov, B. Li, A.V. Mumyatov, D.K. Susarova, E.A. Katz, and P.A. Troshin: Light-induced generation of free radicals by fullerene derivatives: An important degradation pathway in organic photovoltaics? J. Mater. Chem. A 5, 8044–8050 (2017).

    CAS  Article  Google Scholar 

  58. 58.

    Z. Li, K.H. Chiu, R.S. Ashraf, S. Fearn, R. Dattani, H.C. Wong, C.H. Tan, J.Y. Wu, J.T. Cabral, and J.R. Durrant: Toward improved lifetimes of organic solar cells under thermal stress: Substrate-dependent morphological stability of PCDTBT:PCBM films and devices. Sci. Rep. 5, 15149 (2015).

    CAS  Article  Google Scholar 

  59. 59.

    E. Voroshazi, B. Verreet, A. Buri, R. Mueller, D. Di Nuzzo, and P. Heremans: Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells. Org. Electron. 12, 736–744 (2011).

    CAS  Article  Google Scholar 

  60. 60.

    S. Nair, M. Kathiresan, T. Mukundan, and V. Natarajan: Passivation of organic field effect transistor with photopatterned Parylene to improve environmental stability. Microelectron. Eng. 163, 36–42 (2016).

    CAS  Article  Google Scholar 

  61. 61.

    M. Giannouli, V.M. Drakonakis, A. Savva, P. Eleftheriou, G. Florides, and S.A. Choulis: Methods for improving the lifetime performance of organic photovoltaics with low-costing encapsulation. ChemPhysChem 16, 1134–1154 (2015).

    CAS  Article  Google Scholar 

  62. 62.

    J. Won Lim, C. Kyu Jin, K. Yong Lim, Y. Jae Lee, S-R. Kim, B-I. Choi, T. Whan Kim, D. Ha Kim, D. Kyung Hwang, and W. Kook Choi: Transparent high-performance SiOxNy/SiOx barrier films for organic photovoltaic cells with high durability. Nano Energy 33 (Suppl. C), 12–20 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    F. Dollinger, F. Nehm, L. Müller-Meskamp, and K. Leo: Laminated aluminum thin-films as low-cost opaque moisture ultra-barriers for flexible organic electronic devices. Org. Electron. 46 (Suppl. C), 242–246 (2017).

    CAS  Article  Google Scholar 

  64. 64.

    A. Morlier, S. Cros, J-P. Garandet, and N. Alberola: Gas barrier properties of solution processed composite multilayer structures for organic solar cells encapsulation. Sol. Energy Mater. Sol. Cells 115 (Suppl. C), 93–99 (2013).

    CAS  Article  Google Scholar 

  65. 65.

    T. Nam, Y.J. Park, H. Lee, I-K. Oh, J-H. Ahn, S.M. Cho, H. Kim, and H-B-R. Lee: A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier. Carbon 116 (Suppl. C), 553–561 (2017).

    CAS  Article  Google Scholar 

  66. 66.

    P. Cheng and X.W. Zhan: Stability of organic solar cells: Challenges and strategies. Chem. Soc. Rev. 45, 2544–2582 (2016).

    CAS  Article  Google Scholar 

  67. 67.

    M. Salvador, N. Gasparini, J.D. Perea, S.H. Paleti, A. Distler, L.N. Inasaridze, P.A. Troshin, L. Luer, H-J. Egelhaaf, and C. Brabec: Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates. Energy Environ. Sci. 10, 2005–2016 (2017).

    CAS  Article  Google Scholar 

  68. 68.

    V. Turkovic, S. Engmann, N. Tsierkezos, H. Hoppe, M. Madsen, H-G. Rubahn, U. Ritter, and G. Gobsch: Long-term stabilization of organic solar cells using hydroperoxide decomposers as additives. Appl. Phys. A 122, 1–6 (2016).

    CAS  Article  Google Scholar 

  69. 69.

    V. Turkovic, S. Engmann, N. Tsierkezos, H. Hoppe, U. Ritter, and G. Gobsch: Long-term stabilization of organic solar cells using hindered phenols as additives. ACS Appl. Mater. Interfaces 6, 18525–18537 (2014).

    CAS  Article  Google Scholar 

  70. 70.

    V. Turkovic, S. Engmann, N.G. Tsierkezos, H. Hoppe, M. Madsen, H.G. Rubahn, U. Ritter, and G. Gobsch: Long-term stabilization of organic solar cells using UV absorbers. J. Phys. D: Appl. Phys. 49, 125604 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the European Commission’s StableNextSol COST Action MP1307.

(1) Sjoerd Veenstra, Santhosh Shanmugam, and Yulia Galagan acknowledge Solliance, a partnership of R&D organizations from the Netherlands, Belgium, and Germany working in thin film photovoltaic solar energy.

(2) Ana Charas acknowledges Fundação para a Ciência e Tecnologia (FCT-Portugal) for funding through the project UID/EEA/50008/2013.

(3) Vida Turkovic, Horst-Günter Rubahn, and Morten Madsen acknowledge ‘Det Frie Forskningsråd DFF FTP’ for funding of the project Stabil-O and Villum Foundation for funding of the project Compliant-PV, Project No. 13365.

(4) Gloria Zanotti is thankful to the Ente Nazionale Energia e Ambiente (ENEA) and to the Italian Ministry of Foreign Affairs for a visitor post-doc fellowship to Ben Gurion University of the Negev.

(5) Tulus acknowledges the Ministry of Research, Technology and High Education, the Republic of Indonesia (RISET-Pro Scholarship). Tulus and Elizabeth von Hauff acknowledge Fundamental Research on Matter (FOM) (V0714M-13MV60) from the Netherlands Organization for Scientific Research (NWO) for funding.

(6) Rickard Hansson and Ellen Moons thank Dr. Jakub Rysz of the Institute of Physics, Jagiellonian University, for sharing device preparation details and also acknowledge financial support from the Swedish Research Council, Grant No. 2015-03778, the Swedish Energy Council, Contract No. 38327-1, and the Göran Gustafsson Foundation for Research in Natural Sciences and Medicine.

(7) L.F. Marsal, J. Ferre-Borrull, and J.G. Sánchez thank the Spanish Ministry of Economy, Industry and Competitiveness (MEIC) for grant numbers, TEC2015-71915-REDT and TEC2015-71324-R (MINECO/FEDER), the ICREA for the ICREA Academia Award, and the Catalan authority for project AGAUR 2017 SGR 1527.

(8) Francesca Brunetti B acknowledges the FP7-European Project No. 609788 “CHEETAH—Cost-reduction through material optimization and Higher EnErgy outpuT of solAr pHotovoltaic modules”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yulia Galagan.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ciammaruchi, L., Oliveira, R., Charas, A. et al. Stability of organic solar cells with PCDTBT donor polymer: An interlaboratory study. Journal of Materials Research 33, 1909–1924 (2018). https://doi.org/10.1557/jmr.2018.163

Download citation