Abstract
We review two recent advances in coupled quantum mechanics/molecular mechanics (QM/MM) modeling for metallic materials. The QM/MM methods are formulated based on quantum mechanical charge density embedding. In the first method, QM/MM coupling is accomplished by an embedding potential evaluated via orbital-free density functional theory. The charge density embedding in the second QM/MM method is achieved through constrained density functional theory. The extension of QM/MM coupling to the quasicontinuum method is illustrated, offering a route toward quantum mechanical simulations of materials at micron scales and beyond. The theoretical formulations of the QM/MM methods are discussed in detail. We also provide some examples where the QM/MM methods have been applied to understand fundamental physics in a wide range of material problems, ranging from void formation, pipe diffusion along dislocation core, nanoindentation of thin films, hydrogen-assisted cracking, magnetism-induced plasticity to stress-controlled catalysis in metals. An outlook to future development of QM/MM methods for metals is envisioned.
This is a preview of subscription content, access via your institution.










References
- 1.
G. Lu and E. Kaxiras: In Handbook of Theoretical and Computational Nanotechnology, M. Rieth and W. Schommers, eds. (American Scientific, Stevenson Ranch, CA, 2004), pp. 1–33.
- 2.
F.F. Abraham, N. Bernstein, J.Q. Broughton, and D. Hess: Dynamic fracture of silicon: Concurrent simulation of quantum electrons, classical atoms, and the continuum solid. MRS Bull. 25, 27 (2000).
- 3.
N. Bernstein, J.R. Kermode, and G. Csanyi: Hybrid atomistic simulation methods for materials systems. Rep. Prog. Phys. 72, 026501 (2009).
- 4.
J.Q. Broughton, F.F. Abraham, N. Bernstein, and E. Kaxiras: Concurrent coupling of length scales: Methodology and application. Phys. Rev. B 60, 2391 (1999).
- 5.
N. Choly, G. Lu, W. E, and E. Kaxiras: Multiscale simulations in simple metals: A density-functional-based methodology. Phys. Rev. B 71, 094101 (2005).
- 6.
G. Csanyi, T. Albaret, M.C. Payne, and A. De Vita: “Learn on the fly”: A hybrid classical and quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett. 93, 175503 (2004).
- 7.
J.W. Kermode, G. Csanyi, and M.C. Payne: DFT embedding and coarse graining techniques. NIC Series 42, 215 (2009).
- 8.
G. Lu, E.B. Tadmor, and E. Kaxiras: From electrons to finite elements: A concurrent multiscale approach for metals. Phys. Rev. B 73, 024108 (2006).
- 9.
S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, and R.K. Kalia: Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers. Comput. Phys. Commun. 138, 143 (2001).
- 10.
S. Ogata and R. Belkada: A hybrid electronic-density-functional/molecular-dynamics simulation scheme for multiscale simulation of materials on parallel computers: Applications to silicon and alumina. Comput. Mater. Sci. 30, 189 (2004).
- 11.
S. Ogata, F. Shimojo, R.K. Kalia, A. Nakano, and P. Vashishta: Environmental effects of H2O on fracture initiation in silicon: A hybrid electronic-density-functional/molecular-dynamics study. J. Appl. Phys. 95, 5316 (2004).
- 12.
C.Y. Wang and X. Zhang: Multiscale modeling and related hybrid approaches. Curr. Opin. Solid State Mater. Sci. 10, 2 (2006).
- 13.
P. Suryanarayana, V. Gavini, T. Blesgen, K. Bhattacharya, and M. Ortiz: Non-periodic finite-element formulation of Kohn–Sham density functional theory. J. Mech. Phys. Solids 58, 256 (2010).
- 14.
A.K. Nair, D.H. Warner, R.G. Hennig, and W.A. Curtin: Coupling quantum and continuum scales to predict crack tip dislocation nucleation. Scr. Mater. 63, 1212 (2010).
- 15.
C. Woodward and S.I. Rao: Flexible ab initio boundary conditions: Simulating isolated dislocations in bcc Mo and Ta. Phys. Rev. Lett. 88, 216402 (2002).
- 16.
B. Kanungo and V. Gavini: Large-scale all-electron density functional theory calculations using an enriched finite-element basis. Phys. Rev. B 95, 035112 (2017).
- 17.
H. Lin and D.G. Truhlar: QM/MM: What have we learned, where are we, and where do we go from here?Theor. Chem. Acc. 117, 185 (2007).
- 18.
I. Antes and W. Thiel: On the treatment of link atoms in hybrid methods. ACS Symp. Ser. 712, 50 (1998).
- 19.
J. Gao and D.G. Truhlar: Quantum mechanical methods for enzyme kinetics. Annu. Rev. Phys. Chem. 53, 467 (2002).
- 20.
X. Zhang and G. Lu: Quantum mechanics/molecular mechanics methodology for metals based on orbital-free density functional theory. Phys. Rev. B 76, 245111 (2007).
- 21.
X. Zhang, C.Y. Wang, and G. Lu: Electronic structure analysis of self-consistent embedding theory for quantum/molecular mechanics simulations. Phys. Rev. B 78, 235119 (2008).
- 22.
X. Zhang, G. Lu, and W.A. Curtin: Multiscale quantum/atomistic coupling using constrained density functional theory. Phys. Rev. B 87, 054113 (2013).
- 23.
Q. Peng, X. Zhang, L. Huang, E.A. Carter, and G. Lu: Quantum simulation of materials at micron scales and beyond. Phys. Rev. B 78, 054118 (2008).
- 24.
W. Kohn and L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965).
- 25.
M.S. Daw and M.I. Baskes: Embedded-atom method–derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).
- 26.
P. Garcia-Gonzalez, J.E. Alvarellos, and E. Chacon: Nonlocal kinetic-energy-density functionals. Phys. Rev. B 53, 9509 (1996).
- 27.
L.W. Wang and M.P. Teter: Kinetic-energy functional of the electron density. Phys. Rev. B 45, 13196 (1992).
- 28.
Y.A. Wang, N. Govind, and E.A. Carter: Orbital-free kinetic-energy density functionals with a density-dependent kernel. Phys. Rev. B 60, 16350 (1999).
- 29.
L. Hung, C. Huang, and E.A. Carter: Preconditioners and electron density optimization in orbital-free density functional theory. Comput. Phys. Commun. 12, 135 (2012).
- 30.
I. Shin and E.A. Carter: Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors. J. Chem. Phys. 140, 18A531 (2014).
- 31.
Q. Zhao and R.G. Parr: Constrained-search method to determine electronic wave functions from electronic densities. J. Chem. Phys. 98, 543 (1992).
- 32.
Q. Zhao, R.C. Morrison, and R.G. Parr: From electron densities to Kohn-Sham kinetic energies, orbital energies, exchange–correlation potentials, and exchange–correlation energies. Phys. Rev. A 50, 2138 (1994).
- 33.
Q. Wu and W. Yang: A direct optimization method for calculating density functionals and exchange–correlation potentials from electron densities. J. Chem. Phys. 118, 2498 (2003).
- 34.
G. Kresse and J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
- 35.
G. Kresse and J. Furthmuller: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).
- 36.
L.H. Thomas: The calculation of atomic fields. Proc. Camb. Phil. Soc. 23, 542 (1927).
- 37.
E. Fermi: Eine statistiche methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente. Z. Phys. 48, 73 (1928).
- 38.
C.F. von Weizsacker: Zur theorie de Kernmassen. Z. Phys. 96, 431 (1935).
- 39.
R.M. Martin: Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004); Sec. 12.
- 40.
W. E, J. Lu, and J.Z. Yang: Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74, 214115 (2006).
- 41.
W. E and J. Lu: The continuum limit and QM-continuum approximations of quantum mechanical models of solids. Commun. Math. Sci. 5, 679 (2007).
- 42.
Y. Liu, G. Lu, Z.Z. Chen, and N. Kioussis: An improved QM/MM approach for metals. Model. Simulat. Mater. Sci. Eng. 15, 275 (2007).
- 43.
E.B. Tadmor, M. Ortiz, and R. Phillips: Quasicontinuum analysis of defects in solids. Philos. Mag. A 73, 1529 (1996).
- 44.
V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz: An adaptive finite element approach to atomic-scale mechanics—The quasicontinuum method. J. Mech. Phys. Solid 47, 611 (1999).
- 45.
Q. Peng, X. Zhang, C. Huang, E.A. Carter, and G. Lu: Quantum mechanical study of solid solution effects on dislocation nucleation during nanoindentation. Model. Simulat. Mater. Sci. Eng. 18, 075003 (2010).
- 46.
M.H. Hassan, J.P. Blanchard, and G.L. Kulcinski: Stress-enhanced Swelling: Mechanisms and Implication for Fusion Reactors (University of Wisconsin, Madison, WI, 1992).
- 47.
R.J. Gleixner and W.D. Nix: A physically based model of electromigration and stress-induced void formation in microelectronic interconnects. J. Appl. Phys. 86, 1932 (1999).
- 48.
E.T. Seppala, J. Belak, and R.E. Rudd: Onset of void coalescence during dynamic fracture of ductile metals. Phys. Rev. Lett. 93, 245503 (2004).
- 49.
X. Zhang and G. Lu: Electronic origin of void formation in fcc metals. Phys. Rev. B 77, 174102 (2008).
- 50.
J.L. Katz and H. Wiedersich: Nucleation of voids in materials supersaturated with vacancies and interstitials. J. Chem. Phys. 55, 1414 (1971).
- 51.
C.F. Clement and M.H. Woods: The principles of nucleation theory relevant to the void swelling problem. J. Nucl. Mater. 89, 1 (1980).
- 52.
A.B. Pandey, R.S. Mishra, A.G. Paradkar, and Y.R. Mahajan: Steady state creep behaviour of an Al–Al2O3 alloy. Acta Mater. 45, 1297 (1997).
- 53.
Y. Brechet and Y. Estrin: On the influence of precipitation on the Portevin-Le Chatelier effect. Acta Metall. Mater. 43, 955 (1995).
- 54.
W. Luo, C. Shen, and Y. Wang: Nucleation of ordered particles at dislocations and formation of split patterns. Acta Mater. 55, 2579 (2007).
- 55.
S.P. Baker, Y.C. Joo, M.P. Knaub, and E. Arzt: Electromigration damage in mechanically deformed Al conductor lines: Dislocations as fast diffusion paths. Acta Mater. 48, 2199 (2000).
- 56.
M. Legros, G. Dehm, E. Arzt, and T.J. Balk: Observation of giant diffusivity along dislocation cores. Science 319, 1646 (2008).
- 57.
X. Zhang and G. Lu: Calculation of fast pipe diffusion along a dislocation stacking fault ribbon. Phys. Rev. B 82, 012101 (2010).
- 58.
G. Lu, N. Kioussis, V.V. Bulatov, and E. Kaxiras: Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys. Rev. B 62, 3099 (2000).
- 59.
A.C. Fischer-Cripps: Nanoindentation (Springer, New York, 2004).
- 60.
Q. Peng, X. Zhang, and G. Lu: Quantum mechanical simulations of nanoindentation of Al thin film. Comput. Mater. Sci. 47, 769 (2010).
- 61.
S.P. Lynch: Metallographic and Fractographic techniques for characterising and understanding hydrogen-assisted cracking of metals. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R. Gangloff and B. Somerday, eds. (Woodhead, Cambridge, 2012).
- 62.
Y. Sun, Q. Peng, and G. Lu: Quantum mechanical modeling of hydrogen assisted cracking in aluminum. Phys. Rev. B 88, 104109 (2013).
- 63.
G. Lu, Q. Zhang, N. Kioussis, and E. Kaxiras: Hydrogen-enhanced local plasticity in aluminum: An ab initio study. Phys. Rev. Lett. 87, 095501 (2001).
- 64.
G. Lu, D. Orlikowski, I. Park, O. Politano, and E. Kaxiras: Energetics of hydrogen impurities in aluminum and their effect on mechanical properties. Phys. Rev. B 65, 064102 (2002).
- 65.
F. Apostol and Y. Mishin: Hydrogen effect on shearing and cleavage of Al: A first-principles study. Phys. Rev. B 84, 104103 (2011).
- 66.
B. van der Schaaf, D.S. Gelles, S. Jitsukawa, A. Kimura, R.L. Klueh, A. Mosloang, and G.R. Odette: Progress and critical issues of reduced activation ferritic/martensitic steel development. J. Nucl. Mater. 283–287, 52 (2000).
- 67.
L. Malerba, A. Caro, and J. Wallenius: Multiscale modelling of radiation damage and phase transformations: The challenge of FeCr alloys. J. Nucl. Mater. 382, 112 (2008).
- 68.
X. Zhang and G. Lu: How Cr changes the dislocation core structure of alpha-Fe: The role of magnetism. J. Phys.: Condens. Matter 25, 085403 (2013).
- 69.
H.A. Gasteiger and N.M. Markovic: Just a dream or future reality?Science 324, 48 (2009).
- 70.
M.K. Debe: Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43 (2012).
- 71.
J.X. Wang, H. Inada, L. Wu, Y. Zhu, Y.M. Choi, P. Liu, W.P. Zhou, and R.R. Adzic: Oxygen reduction on well-defined core-shell nanocatalysts: Particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 131, 17298 (2009).
- 72.
S. Guo, S. Zhang, and S. Sun: Tuning nanoparticle catalysis for oxygen reduction reaction. Angew. Chem., Int. Ed. 52, 8526 (2013).
- 73.
P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, and A. Nilsson: Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454 (2010).
- 74.
L. Zhang, R. Iyyamperumal, D.F. Yancey, R.M. Crooks, and G. Henkelman: Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction. ACS Nano 7, 9168 (2013).
- 75.
V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, and N.M. Markovic: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493 (2007).
- 76.
X. Zhang and G. Lu: Computational design of core/shell nanoparticles for oxygen reduction reactions. J. Phys. Chem. Lett. 5, 292 (2014).
- 77.
V.R. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, and J.K. Norskov: Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem., Int. Ed. 45, 2897 (2006).
- 78.
J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, and H. Jonsson: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886 (2004).
- 79.
S. Zhang, X. Zhang, G. Jiang, H. Zhu, S. Guo, D. Su, G. Lu, and S. Sun: Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc. 136, 7734 (2014).
- 80.
Z. Chen, X. Zhang, and G. Lu: Multiscale computational design of core/shell nanoparticles for oxygen reduction reaction. J. Phys. Chem. C 121, 1964 (2017).
- 81.
A.P. Bartok, M.C. Payne, R. Kondor, and G. Csanyi: Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).
- 82.
V.L. Deringer and G. Csanyi: Machine learning based interatomic potential for amorphous carbon. Phys. Rev. B 95, 094203 (2017).
- 83.
J. Behler and M. Parrinello: Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
- 84.
A. Seko, A. Takahashi, and I. Tanaka: First-principles interatomic potentials for ten elemental metals via compressed sensing. Phys. Rev. B 92, 054113 (2015).
- 85.
Z. Li, J.R. Kermode, and A. De Vita: Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015).
- 86.
Y. Zhang and H. Lin: Flexible-boundary quantum-mechanical/molecular-mechanical calculations: Partial charge transfer between the quantum-mechanical and molecular-mechanical subsystems. J. Chem. Theory Comput. 4, 414 (2008).
- 87.
Y. Zhang and H. Lin: Flexible-boundary QM/MM calculations: II. Partial charge transfer across the QM/MM boundary that passes through a covalent bond. Theor. Chem. Acc. 216, 315–322 (2010).
- 88.
S. Pezeshki and H. Lin: Recent developments in QM/MM methods towards open-boundary multi-scale simulations. Mol. Simul. 41, 168 (2014).
- 89.
A. Duster, C.H. Wang, C. Garza, D. Miller, and H. Lin: Adaptive QM/MM: Where are we, what have we learned, and where will we go from here?Wiley Interdiscip. Rev.: Comput. Mol. Sci. 7, e1310 (2017).
ACKNOWLEDGMENT
We acknowledge the support of Office of Naval Research (N00014-15-1-2092).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, X., Lu, G. Coupled quantum mechanics/molecular mechanics modeling of metallic materials: Theory and applications. Journal of Materials Research 33, 796–812 (2018). https://doi.org/10.1557/jmr.2018.15
Received:
Accepted:
Published:
Issue Date: