Coupled quantum mechanics/molecular mechanics modeling of metallic materials: Theory and applications

Abstract

We review two recent advances in coupled quantum mechanics/molecular mechanics (QM/MM) modeling for metallic materials. The QM/MM methods are formulated based on quantum mechanical charge density embedding. In the first method, QM/MM coupling is accomplished by an embedding potential evaluated via orbital-free density functional theory. The charge density embedding in the second QM/MM method is achieved through constrained density functional theory. The extension of QM/MM coupling to the quasicontinuum method is illustrated, offering a route toward quantum mechanical simulations of materials at micron scales and beyond. The theoretical formulations of the QM/MM methods are discussed in detail. We also provide some examples where the QM/MM methods have been applied to understand fundamental physics in a wide range of material problems, ranging from void formation, pipe diffusion along dislocation core, nanoindentation of thin films, hydrogen-assisted cracking, magnetism-induced plasticity to stress-controlled catalysis in metals. An outlook to future development of QM/MM methods for metals is envisioned.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

References

  1. 1.

    G. Lu and E. Kaxiras: In Handbook of Theoretical and Computational Nanotechnology, M. Rieth and W. Schommers, eds. (American Scientific, Stevenson Ranch, CA, 2004), pp. 1–33.

  2. 2.

    F.F. Abraham, N. Bernstein, J.Q. Broughton, and D. Hess: Dynamic fracture of silicon: Concurrent simulation of quantum electrons, classical atoms, and the continuum solid. MRS Bull. 25, 27 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    N. Bernstein, J.R. Kermode, and G. Csanyi: Hybrid atomistic simulation methods for materials systems. Rep. Prog. Phys. 72, 026501 (2009).

    Article  CAS  Google Scholar 

  4. 4.

    J.Q. Broughton, F.F. Abraham, N. Bernstein, and E. Kaxiras: Concurrent coupling of length scales: Methodology and application. Phys. Rev. B 60, 2391 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    N. Choly, G. Lu, W. E, and E. Kaxiras: Multiscale simulations in simple metals: A density-functional-based methodology. Phys. Rev. B 71, 094101 (2005).

    Article  CAS  Google Scholar 

  6. 6.

    G. Csanyi, T. Albaret, M.C. Payne, and A. De Vita: “Learn on the fly”: A hybrid classical and quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett. 93, 175503 (2004).

    Article  CAS  Google Scholar 

  7. 7.

    J.W. Kermode, G. Csanyi, and M.C. Payne: DFT embedding and coarse graining techniques. NIC Series 42, 215 (2009).

    Google Scholar 

  8. 8.

    G. Lu, E.B. Tadmor, and E. Kaxiras: From electrons to finite elements: A concurrent multiscale approach for metals. Phys. Rev. B 73, 024108 (2006).

    Article  CAS  Google Scholar 

  9. 9.

    S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, and R.K. Kalia: Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers. Comput. Phys. Commun. 138, 143 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    S. Ogata and R. Belkada: A hybrid electronic-density-functional/molecular-dynamics simulation scheme for multiscale simulation of materials on parallel computers: Applications to silicon and alumina. Comput. Mater. Sci. 30, 189 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    S. Ogata, F. Shimojo, R.K. Kalia, A. Nakano, and P. Vashishta: Environmental effects of H2O on fracture initiation in silicon: A hybrid electronic-density-functional/molecular-dynamics study. J. Appl. Phys. 95, 5316 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    C.Y. Wang and X. Zhang: Multiscale modeling and related hybrid approaches. Curr. Opin. Solid State Mater. Sci. 10, 2 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    P. Suryanarayana, V. Gavini, T. Blesgen, K. Bhattacharya, and M. Ortiz: Non-periodic finite-element formulation of Kohn–Sham density functional theory. J. Mech. Phys. Solids 58, 256 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    A.K. Nair, D.H. Warner, R.G. Hennig, and W.A. Curtin: Coupling quantum and continuum scales to predict crack tip dislocation nucleation. Scr. Mater. 63, 1212 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    C. Woodward and S.I. Rao: Flexible ab initio boundary conditions: Simulating isolated dislocations in bcc Mo and Ta. Phys. Rev. Lett. 88, 216402 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    B. Kanungo and V. Gavini: Large-scale all-electron density functional theory calculations using an enriched finite-element basis. Phys. Rev. B 95, 035112 (2017).

    Article  Google Scholar 

  17. 17.

    H. Lin and D.G. Truhlar: QM/MM: What have we learned, where are we, and where do we go from here?Theor. Chem. Acc. 117, 185 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    I. Antes and W. Thiel: On the treatment of link atoms in hybrid methods. ACS Symp. Ser. 712, 50 (1998).

    CAS  Article  Google Scholar 

  19. 19.

    J. Gao and D.G. Truhlar: Quantum mechanical methods for enzyme kinetics. Annu. Rev. Phys. Chem. 53, 467 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    X. Zhang and G. Lu: Quantum mechanics/molecular mechanics methodology for metals based on orbital-free density functional theory. Phys. Rev. B 76, 245111 (2007).

    Article  CAS  Google Scholar 

  21. 21.

    X. Zhang, C.Y. Wang, and G. Lu: Electronic structure analysis of self-consistent embedding theory for quantum/molecular mechanics simulations. Phys. Rev. B 78, 235119 (2008).

    Article  CAS  Google Scholar 

  22. 22.

    X. Zhang, G. Lu, and W.A. Curtin: Multiscale quantum/atomistic coupling using constrained density functional theory. Phys. Rev. B 87, 054113 (2013).

    Article  CAS  Google Scholar 

  23. 23.

    Q. Peng, X. Zhang, L. Huang, E.A. Carter, and G. Lu: Quantum simulation of materials at micron scales and beyond. Phys. Rev. B 78, 054118 (2008).

    Article  CAS  Google Scholar 

  24. 24.

    W. Kohn and L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965).

    Article  Google Scholar 

  25. 25.

    M.S. Daw and M.I. Baskes: Embedded-atom method–derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).

    CAS  Article  Google Scholar 

  26. 26.

    P. Garcia-Gonzalez, J.E. Alvarellos, and E. Chacon: Nonlocal kinetic-energy-density functionals. Phys. Rev. B 53, 9509 (1996).

    CAS  Article  Google Scholar 

  27. 27.

    L.W. Wang and M.P. Teter: Kinetic-energy functional of the electron density. Phys. Rev. B 45, 13196 (1992).

    CAS  Article  Google Scholar 

  28. 28.

    Y.A. Wang, N. Govind, and E.A. Carter: Orbital-free kinetic-energy density functionals with a density-dependent kernel. Phys. Rev. B 60, 16350 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    L. Hung, C. Huang, and E.A. Carter: Preconditioners and electron density optimization in orbital-free density functional theory. Comput. Phys. Commun. 12, 135 (2012).

    Article  Google Scholar 

  30. 30.

    I. Shin and E.A. Carter: Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors. J. Chem. Phys. 140, 18A531 (2014).

    Article  CAS  Google Scholar 

  31. 31.

    Q. Zhao and R.G. Parr: Constrained-search method to determine electronic wave functions from electronic densities. J. Chem. Phys. 98, 543 (1992).

    Article  Google Scholar 

  32. 32.

    Q. Zhao, R.C. Morrison, and R.G. Parr: From electron densities to Kohn-Sham kinetic energies, orbital energies, exchange–correlation potentials, and exchange–correlation energies. Phys. Rev. A 50, 2138 (1994).

    CAS  Article  Google Scholar 

  33. 33.

    Q. Wu and W. Yang: A direct optimization method for calculating density functionals and exchange–correlation potentials from electron densities. J. Chem. Phys. 118, 2498 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    G. Kresse and J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Article  Google Scholar 

  35. 35.

    G. Kresse and J. Furthmuller: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    CAS  Article  Google Scholar 

  36. 36.

    L.H. Thomas: The calculation of atomic fields. Proc. Camb. Phil. Soc. 23, 542 (1927).

    CAS  Article  Google Scholar 

  37. 37.

    E. Fermi: Eine statistiche methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente. Z. Phys. 48, 73 (1928).

    CAS  Article  Google Scholar 

  38. 38.

    C.F. von Weizsacker: Zur theorie de Kernmassen. Z. Phys. 96, 431 (1935).

    Article  Google Scholar 

  39. 39.

    R.M. Martin: Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004); Sec. 12.

    Google Scholar 

  40. 40.

    W. E, J. Lu, and J.Z. Yang: Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74, 214115 (2006).

    Article  CAS  Google Scholar 

  41. 41.

    W. E and J. Lu: The continuum limit and QM-continuum approximations of quantum mechanical models of solids. Commun. Math. Sci. 5, 679 (2007).

    Article  Google Scholar 

  42. 42.

    Y. Liu, G. Lu, Z.Z. Chen, and N. Kioussis: An improved QM/MM approach for metals. Model. Simulat. Mater. Sci. Eng. 15, 275 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    E.B. Tadmor, M. Ortiz, and R. Phillips: Quasicontinuum analysis of defects in solids. Philos. Mag. A 73, 1529 (1996).

    Article  Google Scholar 

  44. 44.

    V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz: An adaptive finite element approach to atomic-scale mechanics—The quasicontinuum method. J. Mech. Phys. Solid 47, 611 (1999).

    Article  Google Scholar 

  45. 45.

    Q. Peng, X. Zhang, C. Huang, E.A. Carter, and G. Lu: Quantum mechanical study of solid solution effects on dislocation nucleation during nanoindentation. Model. Simulat. Mater. Sci. Eng. 18, 075003 (2010).

    Article  CAS  Google Scholar 

  46. 46.

    M.H. Hassan, J.P. Blanchard, and G.L. Kulcinski: Stress-enhanced Swelling: Mechanisms and Implication for Fusion Reactors (University of Wisconsin, Madison, WI, 1992).

    Google Scholar 

  47. 47.

    R.J. Gleixner and W.D. Nix: A physically based model of electromigration and stress-induced void formation in microelectronic interconnects. J. Appl. Phys. 86, 1932 (1999).

    CAS  Article  Google Scholar 

  48. 48.

    E.T. Seppala, J. Belak, and R.E. Rudd: Onset of void coalescence during dynamic fracture of ductile metals. Phys. Rev. Lett. 93, 245503 (2004).

    CAS  Article  Google Scholar 

  49. 49.

    X. Zhang and G. Lu: Electronic origin of void formation in fcc metals. Phys. Rev. B 77, 174102 (2008).

    Article  CAS  Google Scholar 

  50. 50.

    J.L. Katz and H. Wiedersich: Nucleation of voids in materials supersaturated with vacancies and interstitials. J. Chem. Phys. 55, 1414 (1971).

    CAS  Article  Google Scholar 

  51. 51.

    C.F. Clement and M.H. Woods: The principles of nucleation theory relevant to the void swelling problem. J. Nucl. Mater. 89, 1 (1980).

    CAS  Article  Google Scholar 

  52. 52.

    A.B. Pandey, R.S. Mishra, A.G. Paradkar, and Y.R. Mahajan: Steady state creep behaviour of an Al–Al2O3 alloy. Acta Mater. 45, 1297 (1997).

    CAS  Article  Google Scholar 

  53. 53.

    Y. Brechet and Y. Estrin: On the influence of precipitation on the Portevin-Le Chatelier effect. Acta Metall. Mater. 43, 955 (1995).

    CAS  Article  Google Scholar 

  54. 54.

    W. Luo, C. Shen, and Y. Wang: Nucleation of ordered particles at dislocations and formation of split patterns. Acta Mater. 55, 2579 (2007).

    CAS  Article  Google Scholar 

  55. 55.

    S.P. Baker, Y.C. Joo, M.P. Knaub, and E. Arzt: Electromigration damage in mechanically deformed Al conductor lines: Dislocations as fast diffusion paths. Acta Mater. 48, 2199 (2000).

    CAS  Article  Google Scholar 

  56. 56.

    M. Legros, G. Dehm, E. Arzt, and T.J. Balk: Observation of giant diffusivity along dislocation cores. Science 319, 1646 (2008).

    CAS  Article  Google Scholar 

  57. 57.

    X. Zhang and G. Lu: Calculation of fast pipe diffusion along a dislocation stacking fault ribbon. Phys. Rev. B 82, 012101 (2010).

    Article  CAS  Google Scholar 

  58. 58.

    G. Lu, N. Kioussis, V.V. Bulatov, and E. Kaxiras: Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys. Rev. B 62, 3099 (2000).

    CAS  Article  Google Scholar 

  59. 59.

    A.C. Fischer-Cripps: Nanoindentation (Springer, New York, 2004).

    Google Scholar 

  60. 60.

    Q. Peng, X. Zhang, and G. Lu: Quantum mechanical simulations of nanoindentation of Al thin film. Comput. Mater. Sci. 47, 769 (2010).

    CAS  Article  Google Scholar 

  61. 61.

    S.P. Lynch: Metallographic and Fractographic techniques for characterising and understanding hydrogen-assisted cracking of metals. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R. Gangloff and B. Somerday, eds. (Woodhead, Cambridge, 2012).

    Google Scholar 

  62. 62.

    Y. Sun, Q. Peng, and G. Lu: Quantum mechanical modeling of hydrogen assisted cracking in aluminum. Phys. Rev. B 88, 104109 (2013).

    Article  CAS  Google Scholar 

  63. 63.

    G. Lu, Q. Zhang, N. Kioussis, and E. Kaxiras: Hydrogen-enhanced local plasticity in aluminum: An ab initio study. Phys. Rev. Lett. 87, 095501 (2001).

    CAS  Article  Google Scholar 

  64. 64.

    G. Lu, D. Orlikowski, I. Park, O. Politano, and E. Kaxiras: Energetics of hydrogen impurities in aluminum and their effect on mechanical properties. Phys. Rev. B 65, 064102 (2002).

    Article  CAS  Google Scholar 

  65. 65.

    F. Apostol and Y. Mishin: Hydrogen effect on shearing and cleavage of Al: A first-principles study. Phys. Rev. B 84, 104103 (2011).

    Article  CAS  Google Scholar 

  66. 66.

    B. van der Schaaf, D.S. Gelles, S. Jitsukawa, A. Kimura, R.L. Klueh, A. Mosloang, and G.R. Odette: Progress and critical issues of reduced activation ferritic/martensitic steel development. J. Nucl. Mater. 283–287, 52 (2000).

    Article  Google Scholar 

  67. 67.

    L. Malerba, A. Caro, and J. Wallenius: Multiscale modelling of radiation damage and phase transformations: The challenge of FeCr alloys. J. Nucl. Mater. 382, 112 (2008).

    CAS  Article  Google Scholar 

  68. 68.

    X. Zhang and G. Lu: How Cr changes the dislocation core structure of alpha-Fe: The role of magnetism. J. Phys.: Condens. Matter 25, 085403 (2013).

    Google Scholar 

  69. 69.

    H.A. Gasteiger and N.M. Markovic: Just a dream or future reality?Science 324, 48 (2009).

    CAS  Article  Google Scholar 

  70. 70.

    M.K. Debe: Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43 (2012).

    CAS  Article  Google Scholar 

  71. 71.

    J.X. Wang, H. Inada, L. Wu, Y. Zhu, Y.M. Choi, P. Liu, W.P. Zhou, and R.R. Adzic: Oxygen reduction on well-defined core-shell nanocatalysts: Particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 131, 17298 (2009).

    CAS  Article  Google Scholar 

  72. 72.

    S. Guo, S. Zhang, and S. Sun: Tuning nanoparticle catalysis for oxygen reduction reaction. Angew. Chem., Int. Ed. 52, 8526 (2013).

    CAS  Article  Google Scholar 

  73. 73.

    P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, and A. Nilsson: Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454 (2010).

    CAS  Article  Google Scholar 

  74. 74.

    L. Zhang, R. Iyyamperumal, D.F. Yancey, R.M. Crooks, and G. Henkelman: Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction. ACS Nano 7, 9168 (2013).

    CAS  Article  Google Scholar 

  75. 75.

    V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, and N.M. Markovic: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493 (2007).

    CAS  Article  Google Scholar 

  76. 76.

    X. Zhang and G. Lu: Computational design of core/shell nanoparticles for oxygen reduction reactions. J. Phys. Chem. Lett. 5, 292 (2014).

    CAS  Article  Google Scholar 

  77. 77.

    V.R. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, and J.K. Norskov: Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem., Int. Ed. 45, 2897 (2006).

    CAS  Article  Google Scholar 

  78. 78.

    J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, and H. Jonsson: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886 (2004).

    CAS  Article  Google Scholar 

  79. 79.

    S. Zhang, X. Zhang, G. Jiang, H. Zhu, S. Guo, D. Su, G. Lu, and S. Sun: Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc. 136, 7734 (2014).

    CAS  Article  Google Scholar 

  80. 80.

    Z. Chen, X. Zhang, and G. Lu: Multiscale computational design of core/shell nanoparticles for oxygen reduction reaction. J. Phys. Chem. C 121, 1964 (2017).

    CAS  Article  Google Scholar 

  81. 81.

    A.P. Bartok, M.C. Payne, R. Kondor, and G. Csanyi: Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Article  CAS  Google Scholar 

  82. 82.

    V.L. Deringer and G. Csanyi: Machine learning based interatomic potential for amorphous carbon. Phys. Rev. B 95, 094203 (2017).

    Article  Google Scholar 

  83. 83.

    J. Behler and M. Parrinello: Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  CAS  Google Scholar 

  84. 84.

    A. Seko, A. Takahashi, and I. Tanaka: First-principles interatomic potentials for ten elemental metals via compressed sensing. Phys. Rev. B 92, 054113 (2015).

    Article  CAS  Google Scholar 

  85. 85.

    Z. Li, J.R. Kermode, and A. De Vita: Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015).

    Article  CAS  Google Scholar 

  86. 86.

    Y. Zhang and H. Lin: Flexible-boundary quantum-mechanical/molecular-mechanical calculations: Partial charge transfer between the quantum-mechanical and molecular-mechanical subsystems. J. Chem. Theory Comput. 4, 414 (2008).

    CAS  Article  Google Scholar 

  87. 87.

    Y. Zhang and H. Lin: Flexible-boundary QM/MM calculations: II. Partial charge transfer across the QM/MM boundary that passes through a covalent bond. Theor. Chem. Acc. 216, 315–322 (2010).

    Article  CAS  Google Scholar 

  88. 88.

    S. Pezeshki and H. Lin: Recent developments in QM/MM methods towards open-boundary multi-scale simulations. Mol. Simul. 41, 168 (2014).

    Article  CAS  Google Scholar 

  89. 89.

    A. Duster, C.H. Wang, C. Garza, D. Miller, and H. Lin: Adaptive QM/MM: Where are we, what have we learned, and where will we go from here?Wiley Interdiscip. Rev.: Comput. Mol. Sci. 7, e1310 (2017).

    Google Scholar 

Download references

ACKNOWLEDGMENT

We acknowledge the support of Office of Naval Research (N00014-15-1-2092).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gang Lu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lu, G. Coupled quantum mechanics/molecular mechanics modeling of metallic materials: Theory and applications. Journal of Materials Research 33, 796–812 (2018). https://doi.org/10.1557/jmr.2018.15

Download citation