Effect of spheroidization of eutectic Si on mechanical properties of eutectic Al–Si alloys


Al–12.6Si was annealed at both 500 and 560 °C for different lengths of time in this study. Additionally, the effects of annealing treatment on the spheroidization of eutectic Si and the mechanical properties of the Al–Si alloy have been investigated. The morphology of these particles was described using surface shape factor (φ), and it was found that the optimal annealing time of Al–12.6Si at 500 and 560 °C is seven hours and five hours, respectively. The average size of the Si particles in the Al–Si alloy annealed at 500 °C is less than that of the particles at 560 °C. The roundness of the Si particles within the Al–Si alloy annealed at 500 °C is slightly better than that at 560 °C. The elongation of the alloy apparently increases, while the tensile strength of the Al–Si alloy decreases. The tensile strength and elongation of the eutectic Al–Si alloy annealed at 500 °C is higher than that at 560 °C.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    E.L. Rooy: Metals Handbook (ASM International, Ohio, 1989); pp. 43–70.

    Google Scholar 

  2. 2.

    M. Hamn, I.A. Talib, and A.R. Daud: Effect of element additions on wear property of eutectic aluminium–silicon alloys. Wear 194, 54 (1996).

    Article  Google Scholar 

  3. 3.

    M. Faraji and H. Khalilpour: Effect of phosphorous inoculation on creep behavior of a hypereutectic Al–Si alloy. J. Mater. Eng. Perform. 23, 3467 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Y.J. Sun, Q.L. Wang, and H.R. Geng: Effects of complex modificating technique on microstructure and mechanical properties of hypereutectic Al–Si alloys. J. Mater. Sci. 47, 2104 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    G. Meschut, M. Matzke, R. Hoerhold, and T. Olfermann: Hybrid technologies for joining ultra-high-strength boron steels with aluminum alloys for lightweight car body structures. Procedia CIRP 23, 19 (2014).

    Article  Google Scholar 

  6. 6.

    S. Nafisi and R. Ghomashchi: Grain refining of conventional and semi-solid A356 Al–Si alloy. J. Mater. Process. Technol. 174, 371 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    F.C. Robles Hernández and J.H. Sokolowski: Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al–Si hypereutectic alloys. J. Alloys Compd. 426, 205 (2006).

    Article  Google Scholar 

  8. 8.

    A.M. Samuel, H.W. Doty, S. Valtierra, and F.H. Samuel: Effect of grain refining and Sr-modification interactions on the impact toughness of Al–Si–Mg cast alloys. Mater. Des. 56, 264 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    A.K.P. Rao, K. Das, and B.S. Murty: On the modification and segregation behavior of Sb in Al–7Si alloy during solidification. Mater. Lett. 62, 2013 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    J.H. Li, X.D. Wang, T.H. Ludwig, Y. Tsunekawa, L. Arnberg, J.Z. Jiang, and P. Schumacher: Modification of eutectic Si in Al–Si alloys with Eu addition. Acta Mater. 84, 153 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    C. Chen, Z.X. Liu, and B. Ren: Influences of complex modification of P and RE on microstructure and mechanical properties of hypereutectic Al–20Si alloy. Trans. Met. Soc. China 17, 301 (2007).

    Article  Google Scholar 

  12. 12.

    A. Pacz: Alloy. U.S. Patent No. 1387900, 1921.

  13. 13.

    H. Sens, N. Eustathopoulos, D. Camel, and J.J. Favier: Solidification of binary and Sr-modified Al–Si eutectic alloys: Theoretical analysis of solute fields. Acta Metall. Mater. 40, 1783 (1992).

    CAS  Article  Google Scholar 

  14. 14.

    O. Uzun, F. Yılmaz, U. Kolemen, and N. Basman: Sb effect on microstructural and mechanical properties of rapidly solidified Al–12Si alloy. J. Alloys Compd. 509, 21 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    C. Comte and J. von Stebut: Microprobe-type measurement of Young’s modulus and Poisson coefficient by means of depth sensing indentation and acoustic microscopy. Surf. Coat. Technol. 154, 42 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    S.Z. Lu and A. Hellawel: The mechanism of silicon modification in aluminum–silicon alloys: Impurity induced twinning. Metall. Mater. Trans. A 18, 1721 (1987).

    Article  Google Scholar 

  17. 17.

    B. Li, H.W. Wang, J.C. Jie, and Z.J. Wei: Effects of yttrium and heat treatment on the microstructure and tensile properties of Al–7.5Si–0.5Mg alloy. Mater. Des. 32, 1617 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    N. Haghdadi, A. Zarei-Hanzaki, H.R. Abedi, and O. Sabokpa: The effect of thermomechanical parameters on the eutectic silicon characteristics in a non-modified cast A356 aluminum alloy. Mater. Sci. Eng., A 549, 93 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, and T.B. Sercombe: A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater. 95, 74 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, and J. Eckert: Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng., A 590, 153 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    J.Q. Zhu, Y. Liu, H.P. Peng, J.H. Wang, and X.P. Su: Spheroidization of Si in Al–12.6 wt% Si at eutectic temperature and its tensile properties. Mater. Res. Express 4, 106505 (2017).

    Article  Google Scholar 

  22. 22.

    J.H. Wang, T. Li, X.P. Su, H. Tu, Y. Liu, C.J. Wu, and J.L. Li: Microstructural evolution and grain refining efficiency of Al–10Ti master alloy improved by copper mold die casting. J. Mater. Eng. Perform. 22, 2012 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    A.M. Bouwman, J.C. Bosma, P. Vonk, J.A. Wesselingh, and H.W. Frijlink: Which shape factor(s) best describe granules. Powder Technol. 146, 66 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    S.Z. Zhang, M.M. Lia, and R. Yang: Mechanism and kinetics of carbide dissolution in near alpha Ti–5.6Al–4.8Sn–2Zr–1Mo–0.35Si–0.7Nd titanium alloy. Mater. Charact. 62, 1151 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    X.M. Wang, R.J. Zhang, and W.Q. Jie: Dissolution of the second phase during continuous heating process. Acta Metall. Sin. 40, 434 (2004).

    CAS  Google Scholar 

  26. 26.

    E. Ogris, A. Wahlen, H. Lüchinger, and P.J. Uggowitzer: On the silicon spheroidization in Al–Si alloys. J. Light Met. 2, 263 (2002).

    Article  Google Scholar 

  27. 27.

    I. Kovacevic: Simulation of spheroidisation of elongated Si-particle in Al–Si alloys by the phase-field model. Mater. Sci. Eng., A 496, 345 (2008).

    Article  Google Scholar 

  28. 28.

    J.H. Wang, T. Li, L. Yin, J. Li, and X.P. Su: Evolution of Al3Ti phase in sub-rapidly solidified Al–10Ti master alloy. Trans. Mater. Heat Treat. 34, 19 (2013). (in chinese).

    Google Scholar 

Download references


The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (No. 51571039) and the Jiangsu 2016 ordinary university graduate research and innovation project (KYLX16_0633).

Author information



Corresponding author

Correspondence to Xuping Su.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhu, J., Liu, Y. et al. Effect of spheroidization of eutectic Si on mechanical properties of eutectic Al–Si alloys. Journal of Materials Research 33, 1773–1781 (2018). https://doi.org/10.1557/jmr.2018.144

Download citation