CuO-ZnO anchored on APS modified activated carbon as an enhanced catalyst for methanol synthesis—The role of ZnO

Abstract

In this work, activated carbon was modified by ammonium persulfate and used as the catalyst support for CO2 hydrogenation to methanol. Then CuO and/or ZnO were loaded on the support by a facile wet-impregnation method. The obtained CuZn/C, Cu/C, and Zn/C catalysts were characterized by a series of characterization techniques including N2 physisorption, X-ray diffraction (XRD), X-ray photoelectron (XPS), and scanning and transmission electron microscopies (SEM and TEM). XRD and XPS results showed that ZnO affected the reduction of Cu2+. The TEM results showed that Cu particles were 14–18 nm for the fresh catalysts CuZn/C and Cu/C. ZnO particles were too small to be identified by TEM. The used catalysts CuZn/C and Cu/C had particle sizes of 10–25 nm and 50–60 nm, respectively. The enhanced methanol synthesis performance by ZnO could be ascribed to the morphology effect and slowing down the Cu particles sintering during the reactions.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

References

  1. 1.

    K. Klier: Methanol synthesis. In Advances in Catalysis, D.D. Eley, H. Pines, and B.W. Paul, eds. (Academic Press, Cambridge, Massachusetts, 1982); p. 243.

    Google Scholar 

  2. 2.

    G. Chinchen, C. Hay, H. Vandervell, and K. Waugh: The measurement of copper surface areas by reactive frontal chromatography. J. Catal. 79, 103 (1987).

    Google Scholar 

  3. 3.

    G. Chinchen, K. Mansfield, and M. Spencer: The methanol synthesis—How does it work. CHEMTECH 692, 20 (1990).

    Google Scholar 

  4. 4.

    K. Waugh: Methanol synthesis. Catal. Today 51, 15 (1992).

    Google Scholar 

  5. 5.

    F.S.I.K. Malte Behrens: The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    M. Behrens: Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts. J. Catal. 24, 267 (2009).

    Google Scholar 

  7. 7.

    M. Behrens, S. Kißner, F. Girsgdies, I. Kasatkin, F. Hermerschmidt, K. Mette, H. Ruland, M. Muhler, and R. Schlögl: Knowledge-based development of a nitrate-free synthesis route for Cu/ZnO methanol synthesis catalysts via formate precursors. Chem. Commun. 1701, 47 (2011).

    Google Scholar 

  8. 8.

    Y. Choi, K. Futagami, T. Fujitani, and J. Nakamura: The role of ZnO in Cu/ZnO methanol synthesis catalysts—Morphology effect or active site model? Appl. Catal., A 163, 208 (2001).

    Google Scholar 

  9. 9.

    T. Fujitani, M. Saito, Y. Kanai, T. Kakumoto, T. Watanabe, J. Nakamura, and T. Uchijima: The role of metal oxides in promoting a copper catalyst for methanol synthesis. Catal. Lett. 271, 25 (1994).

    Google Scholar 

  10. 10.

    S. Zander, E.L. Kunkes, M.E. Schuster, J. Schumann, G. Weinberg, D. Teschner, N. Jacobsen, R. Schlögl, and M. Behrens: The role of the oxide component in the development of copper composite catalysts for methanol synthesis. Angew. Chem. Int. Ed. 6536, 52 (2013).

    Google Scholar 

  11. 11.

    M.S. Spencer: The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water–gas shift reaction. Top. Catal. 259, 8 (1999).

    Google Scholar 

  12. 12.

    D. Wang, F. Tao, H. Zhao, H. Song, and L. Chou: Preparation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol by CO2 assisted aging. Chin. J. Catal. 1452, 32 (2011).

    Google Scholar 

  13. 13.

    J. Zhou and H-L. Tsai: Effects of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding. Int. J. Heat Mass Tran. 2217, 50 (2007).

    Google Scholar 

  14. 14.

    Y. Yang, C.M. Brown, C. Zhao, A.L. Chaffee, B. Nick, D. Zhao, P.A. Webley, J. Schalch, J.M. Simmons, and Y. Liu: Micro-channel development and hydrogen adsorption properties in templated microporous carbons containing platinum nanoparticles. Carbon 1305, 49 (2011).

    Google Scholar 

  15. 15.

    Y. Liu, Q. Huang, G. Jiang, D. Liu, and W. Yu: Cu2O nanoparticles supported on carbon nanofibers as a cost-effective and efficient catalyst for RhB and phenol degradation. J. Mater. Res. 3605, 32 (2017).

    Google Scholar 

  16. 16.

    J. Zhou, L. Bao, S. Wu, W. Yang, and H. Wang: Nitrogen-doped ordered mesoporous carbon using task-specific ionic liquid as a dopant for high-performance supercapacitors. J. Mater. Res. 404, 32 (2017).

    Google Scholar 

  17. 17.

    N.R.D. Tacconi, W. Chanmanee, B.H. Dennis, and K. Rajeshwar: Composite copper oxide–copper bromide films for the selective electroreduction of carbon dioxide. J. Mater. Res. 1, 1727 (2017).

    Article  Google Scholar 

  18. 18.

    H. Duan, Y. Yang, R. Singh, K. Chiang, S. Wang, P. Xiao, J. Patel, D. Danaci, N. Burke, and Y. Zhai: Mesoporous carbon-supported Cu/ZnO for methanol synthesis from carbon dioxide. Aust. J. Chem. 907, 67 (2014).

    Google Scholar 

  19. 19.

    H. Duan, Y. Yang, J. Patel, D. Dumbre, S.K. Bhargava, N. Burke, Y. Zhai, and P.A. Webley: A facile method to synthesis a mesoporous carbon supported methanol catalyst containing well dispersed Cu/ZnO. Mater. Res. Bull. 232, 60 (2014).

    Google Scholar 

  20. 20.

    H. Palza, N. Saldias, P. Arriagada, P. Palma, and J. Sanchez: Antibacterial carbon nanotubes by impregnation with copper nanostructures. JOM 1319, 69 (2017).

    Google Scholar 

  21. 21.

    A.E. Aksoylu, M. Madalena, A. Freitas, M.F.R. Pereira, and J.L. Figueiredo: The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon 175, 39 (2001).

    Google Scholar 

  22. 22.

    L. Monser and N. Adhoum: Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep. Purif. Technol. 137, 26 (2002).

    Google Scholar 

  23. 23.

    M. Schwegler, P. Vinke, M. Van der Eijk, and H. Van Bekkum: Activated carbon as a support for heteropolyanion catalysts. Appl. Catal., A 41, 80 (1992).

    Google Scholar 

  24. 24.

    H-H. Tseng and M-Y. Wey: Effects of acid treatments of activated carbon on its physiochemical structure as a support for copper oxide in DeSO2 reaction catalysts. Chemosphere 756, 62 (2006).

    Google Scholar 

  25. 25.

    Z.H. Zhu, L.R. Radovic, and G.Q. Lu: Effects of acid treatments of carbon on N2O and NO reduction by carbon-supported copper catalysts. Carbon 451, 38 (2000).

    Google Scholar 

  26. 26.

    D. Macina, Z. Piwowarska, K. Tarach, K. Góra-Marek, J. Ryczkowski, and L. Chmielarz: Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol. Mater. Res. Bull. 425, 74 (2016).

    Google Scholar 

  27. 27.

    P. Podbršček, Z.C. Orel, and J. Maček: Low temperature synthesis of porous copper/zinc oxide. Mater. Res. Bull. 1642, 44 (2009).

    Google Scholar 

  28. 28.

    J.H. Flores, M.E.H.M. da Costa, and M.I.P. da Silva: Effect of Cu–ZnO–Al2O3 supported on H-ferrierite on hydrocarbons formation from CO hydrogenation. Chin. J. Catal. 378, 37 (2016).

    Google Scholar 

  29. 29.

    Z. Zhang and P. Wang: Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 2456, 22 (2012).

    Google Scholar 

  30. 30.

    P. Liu and E.J.M. Hensen: Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 14032, 135 (2013).

    Google Scholar 

  31. 31.

    M. Salavati-Niasari, F. Davar, and A. Khansari: Nanosphericals and nanobundles of ZnO: Synthesis and characterization. J. Alloys Compd. 61, 509 (2011).

    Google Scholar 

  32. 32.

    J.D. Grunwaldt, A.M. Molenbroek, N.Y. Topsøe, H. Topsøe, and B.S. Clausen: In situ investigations of structural changes in Cu/ZnO catalysts. J. Catal. 452, 194 (2000).

    Google Scholar 

  33. 33.

    G.C. Chinchen, K.C. Waugh, and D.A. Whan: The activity and state of the copper surface in methanol synthesis catalysts. Appl. Catal. 101, 25 (1986).

    Google Scholar 

  34. 34.

    P.B. Rasmussen, M. Kazuta, and I. Chorkendorff: Synthesis of methanol from a mixture of H2 and CO2 on Cu(100). Surf. Sci. 267, 318 (1994).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We kindly thank Dr. Deepa Dumbre for XPS measurements. HD is grateful for financial support provided by the National Science Foundation of China, Project Nos. 51704048 and 51674052.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Huamei Duan or Yandong Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Li, Y., Lv, X. et al. CuO-ZnO anchored on APS modified activated carbon as an enhanced catalyst for methanol synthesis—The role of ZnO. Journal of Materials Research 33, 1625–1631 (2018). https://doi.org/10.1557/jmr.2018.140

Download citation