High performance aqueous asymmetric supercapacitor based on iron oxide anode and cobalt oxide cathode

Abstract

We develop an asymmetric aqueous supercapacitor using iron oxide anode and cobalt oxide cathode. The anode was fabricated using electrospinning of carbon precursor/iron oxide precursor blend followed by pyrolysis and in situ electrochemical conversion (to oxide) to form the binder-free and freestanding composite anode which delivered a capacitance of 460 F/g at 1 A/g and retained 82% capacitance after 5000 cycles. The superior performance is attributed to easy electrolyte accessibility as well as the porous fibrous carbon morphology, facilitating volume expansion of iron oxide. The cobalt oxide cathode was prepared using a simple chemical synthesis technique. The electrodes were chosen based on high over potential to water splitting reactions in 6 M KOH electrolyte resulting in a potential window of 1.6 V. The asymmetric device operated in 1.6 V achieved a capacitance of 94.5 F/g at 0.5 A/g while retaining 75% of its capacitance after 12,000 cycles, delivering energy and power densities of 40.53 W h/kg and 2432 W/kg, respectively.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

References

  1. 1.

    Y.G. Patrice Simon: Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    E. Frackowiak: Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    R.R. Salunkhe, Y.H. Lee, K.H. Chang, J.M. Li, P. Simon, J. Tang, N.L. Torad, C.C. Hu, and Y. Yamauchi: Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chemistry 20, 13838 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    X. Tang, R. Jia, T. Zhai, and H. Xia: Hierarchical Fe3O4@Fe2O3 core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 27518 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    L. Bao and X. Li: Towards textile energy storage from cotton T-shirts. Adv. Mater. 24, 3246 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    X. Lang, A. Hirata, T. Fujita, and M. Chen: Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    X. Peng, L. Peng, C. Wu, and Y. Xie: Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 43, 3303 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    J. Liu, L. Zhang, H.B. Wu, J. Lin, Z. Shen, and X.W. Lou: High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ. Sci. 7, 3709 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    M.F. El-Kady and R.B. Kaner: Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013).

    Article  CAS  Google Scholar 

  10. 10.

    M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu: Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale 5, 72 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    L. Bao, J. Zang, and X. Li: Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett. 11, 1215 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    L. Demarconnay, E.G. Calvo, L. Timperman, M. Anouti, D. Lemordant, E. Raymundo-Piñero, A. Arenillas, J.A. Menéndez, and F. Béguin: Optimizing the performance of supercapacitors based on carbon electrodes and protic ionic liquids as electrolytes. Electrochim. Acta 108, 361 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    C. Liu, F. Li, L.P. Ma, and H.M. Cheng: Advanced materials for energy storage. Adv. Mater. 22, E28 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    A.L. Mohana Reddy, S.R. Gowda, M.M. Shaijumon, and P.M. Ajayan: Hybrid nanostructures for energy storage applications. Adv. Mater. 24, 5045 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    P.S. Khadke and U. Krewer: Performance losses at H2/O2 alkaline membrane fuel cell. Electrochem. Commun. 51, 117 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    H. Xia, Y. Shirley Meng, G. Yuan, C. Cui, and L. Lu: A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. Electrochem. Solid-State Lett. 15, A60–A63 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, and Y. Wu: Electrode materials for aqueous asymmetric supercapacitors. RSC Adv. 3, 13059–13084 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    A. Singh and A. Chandra: Significant performance enhancement in asymmetric supercapacitors based on metal oxides, carbon nanotubes and neutral aqueous electrolyte. Sci. Rep. 5, 15551 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    W. Tang, L. Liu, S. Tian, L. Li, Y. Yue, Y. Wu, and K. Zhu: Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Chem. Commun. 47, 10058 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    S.K. Simotwo, C. DelRe, and V. Kalra: Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers. ACS Appl. Mater. Interfaces 8, 21261 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    C. Zhou, Y. Zhang, Y. Li, and J. Liu: Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13, 2078 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Z. Tai, J. Lang, X. Yan, and Q. Xue: Mutually enhanced capacitances in carbon nanofiber/cobalt hydroxide composite paper for supercapacitor. J. Electrochem. Soc. 159, A485–A491 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    S.K. Simotwo and V. Kalra: Polyaniline-based electrodes: recent application in supercapacitors and next generation rechargeable batteries. Curr. Opin. Chem. Eng. 13, 150–160 (2016).

    Article  Google Scholar 

  24. 24.

    C.D. Lokhande, D.P. Dubal, and O-S. Joo: Metal oxide thin film based supercapacitors. Curr. Appl. Phys. 11, 255 (2011).

    Article  Google Scholar 

  25. 25.

    X. Zhao, B.M. Sanchez, P.J. Dobson, and P.S. Grant: The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3, 839 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    G. Wang, L. Zhang, and J. Zhang: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    R.S. Devan, R.A. Patil, J-H. Lin, and Y-R. Ma: One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 22, 3326 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, and Y. Tong: Iron-based supercapacitor electrodes: Advances and challenges. Adv. Energy Mater. 6, 1601053 (2016).

    Article  CAS  Google Scholar 

  29. 29.

    R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, and Y. Yamauchi: Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 9, 6288 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    L.L. Zhang and X.S. Zhao: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    Q. Qu, S. Yang, and X. Feng: 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23, 5574 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    D. Guan, Z. Gao, W. Yang, J. Wang, Y. Yuan, B. Wang, M. Zhang, and L. Liu: Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material. Mater. Sci. Eng., B 178, 736 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    X. Wang, C. Yan, A. Sumboja, and P.S. Lee: High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor. Nano Energy 3, 119 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    W. Li, S. Wang, L. Xin, M. Wu, and X. Lou: Single-crystal β-NiS nanorod arrays with a hollow-structured Ni3S2 framework for supercapacitor applications. J. Mater. Chem. A 4, 7700 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, and Z.L. Wang: Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14, 731 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    T. Liu, Y. Ling, Y. Yang, L. Finn, E. Collazo, T. Zhai, Y. Tong, and Y. Li: Investigation of hematite nanorod–nanoflake morphological transformation and the application of ultrathin nanoflakes for electrochemical devices. Nano Energy 12, 169 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Y. Lin, X. Wang, G. Qian, and J.J. Watkins: Additive-driven self-assembly of well-ordered mesoporous carbon/iron oxide nanoparticle composites for supercapacitors. Chem. Mater. 26, 2128 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Y. Zeng, Y. Han, Y. Zhao, Y. Zeng, M. Yu, Y. Liu, H. Tang, Y. Tong, and X. Lu: Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Mater. 5, 1402176 (2015).

    Article  CAS  Google Scholar 

  39. 39.

    X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, S. Xie, M.S. Balogun, and Y. Tong: Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 26, 3148 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    X. Xia, Q. Hao, W. Lei, W. Wang, D. Sun, and X. Wang: Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance supercapacitors. J. Mater. Chem. 22, 16844 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    H. Wang, Z. Xu, H. Yi, H. Wei, Z. Guo, and X. Wang: One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 7, 86 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    R. Li, Y. Wang, C. Zhou, C. Wang, X. Ba, Y. Li, X. Huang, and J. Liu: Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability. Adv. Funct. Mater. 25, 5384 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    T. Zhai, L. Wan, S. Sun, Q. Chen, J. Sun, Q. Xia, and H. Xia: Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29, 1604167 (2017).

    Article  CAS  Google Scholar 

  44. 44.

    K. Ujimine and A. Tsutsumi: Electrochemical characteristics of iron carbide as an active material in alkaline batteries. J. Power Sources 160, 1431 (2006).

    CAS  Article  Google Scholar 

  45. 45.

    F. Bonnet, F. Ropital, P. Lecour, D. Espinat, Y. Huiban, L. Gengembre, Y. Berthier, and P. Marcus: Study of the oxide/carbide transition on iron surfaces during catalytic coke formation. Surf. Interface Anal. 34, 418 (2002).

    CAS  Article  Google Scholar 

  46. 46.

    A.P. Grosvenor, B.A. Kobe, and N.S. McIntyre: Studies of the oxidation of iron by water vapour using X-ray photoelectron spectroscopy and QUASES™. Surf. Sci. 572, 217 (2004).

    CAS  Article  Google Scholar 

  47. 47.

    G.C. Allen, M.T. Curtis, A.J. Hooper, and P.M. Tucker: X-ray photoelectron spectroscopy of iron–oxygen systems. J. Chem. Soc., Dalton Trans. 1974, 1525 (1974).

    Article  Google Scholar 

  48. 48.

    Y. Jia, T. Luo, X-Y. Yu, B. Sun, J-H. Liu, and X-J. Huang: Synthesis of monodispersed α-FeOOH nanorods with a high content of surface hydroxyl groups and enhanced ion-exchange properties towards As(V). RSC Adv. 3, 15805 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    J. Baltrusaitis, D.M. Cwiertny, and V.H. Grassian: Adsorption of sulfur dioxide on hematite and goethite particle surfaces. Phys. Chem. Chem. Phys. 9, 5542 (2007).

    CAS  Article  Google Scholar 

  50. 50.

    X. Wang, M. Li, Z. Chang, Y. Yang, Y. Wu, and X. Liu: Co3O4@MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors. ACS Appl. Mater. Interfaces 7, 2280 (2015).

    CAS  Article  Google Scholar 

  51. 51.

    S. Abouali, M.A. Garakani, B. Zhang, Z.L. Xu, E.K. Heidari, J.Q. Huang, J. Huang, and J.K. Kim: Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl. Mater. Interfaces 7, 13503 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    Y. Shan and L. Gao: Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Mater. Chem. Phys. 103, 206 (2007).

    CAS  Article  Google Scholar 

  53. 53.

    C. Yuan, L. Yang, L. Hou, L. Shen, F. Zhang, D. Li, and X. Zhang: Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors. J. Mater. Chem. 21, 18183–18185 (2011).

    CAS  Article  Google Scholar 

  54. 54.

    J. Yan, T. Wei, W. Qiao, B. Shao, Q. Zhao, L. Zhang, and Z. Fan: Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta 55, 6973 (2010).

    CAS  Article  Google Scholar 

  55. 55.

    C.S. Dai, P.Y. Chien, J.Y. Lin, S.W. Chou, W.K. Wu, P.H. Li, K.Y. Wu, and T.W. Lin: Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 5, 12168 (2013).

    CAS  Article  Google Scholar 

  56. 56.

    X. Li, Q. Li, Y. Wu, M. Rui, and H. Zeng: Two-dimensional, porous nickel-cobalt sulfide for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 19316 (2015).

    CAS  Article  Google Scholar 

  57. 57.

    C.H. Tang, X. Yin, and H. Gong: Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core–shell electrode. ACS Appl. Mater. Interfaces 5, 10574 (2013).

    CAS  Article  Google Scholar 

  58. 58.

    L. Shen, J. Wang, G. Xu, H. Li, H. Dou, and X. Zhang: NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater. 5, 1400977 (2015).

    Article  CAS  Google Scholar 

  59. 59.

    Y. Li, L. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao, and Y. Zhang: Ni–Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J. Mater. Chem. A 2, 6540 (2014).

    CAS  Article  Google Scholar 

  60. 60.

    Z. Wu, X. Pu, X. Ji, Y. Zhu, M. Jing, Q. Chen, and F. Jiao: High energy density asymmetric supercapacitors from mesoporous NiCo2S4 nanosheets. Electrochim. Acta 174, 238 (2015).

    CAS  Article  Google Scholar 

  61. 61.

    H. Chen, J. Jiang, L. Zhang, D. Xia, Y. Zhao, D. Guo, T. Qi, and H. Wan: In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J. Power Sources 254, 249 (2014).

    CAS  Article  Google Scholar 

  62. 62.

    H. Chen, J. Jiang, Y. Zhao, L. Zhang, D. Guo, and D. Xia: One-pot synthesis of porous nickel cobalt sulphides: Tuning the composition for superior pseudocapacitance. J. Mater. Chem. A 3, 428 (2015).

    CAS  Article  Google Scholar 

  63. 63.

    H. Fan, R. Niu, J. Duan, W. Liu, and W. Shen: Fe3O4@carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 19475 (2016).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank National Science Foundation for funding this work under award numbers CMMI-1537827 and CMMI-1463170. We are very grateful to Drexel University Centralized Research Facility for the use of their characterization equipments. We would like to thank Dr. Mykola Seredych from Prof. Yury Gogotsi’s group and Bryan Byles from Prof. Ekaterina Pomerantseva’s group at Drexel University for their help with the surface area measurements and X-ray photoelectron spectroscopy measurements, respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vibha Kalra.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pai, R., Kalra, V. High performance aqueous asymmetric supercapacitor based on iron oxide anode and cobalt oxide cathode. Journal of Materials Research 33, 1199–1210 (2018). https://doi.org/10.1557/jmr.2018.13

Download citation