Flow stress and deformation behavior of fine-grained Mg matrix influenced by bimodal size SiCp

Abstract

To obtain a fine-grained Mg matrix, the (submicron + micron) bimodal size SiC particle reinforced AZ91 (SiCp/AZ91) composite was subjected to forging followed by the extrusion process first. Then, the fine-grained bimodal size SiCp/AZ91 composite was compressed at 270–370 °C with 0.1–0.001 s−1. The result indicated that the refinement of the Mg matrix contributed to its deteriorated strength at high temperature. However, the grain size is not the only factor influencing flow stress but the SiCp also plays an important role. The effect of SiCp on the fine grained Mg matrix depends on grain size and dislocation density, both of which strongly depend on temperature and strain rate. As compared with the fine grained Mg matrix reinforced by single size SiCp, the one with bimodal size SiCp unusually exhibit lower flow stress during hot compression. The calculated activation energy of the bimodal size SiCp/AZ91 composite is higher than the micron SiCp/AZ91 composite; however, nearly the same as the submicron SiCp/AZ91 composite, and the deformation of which was thought to be controlled by ∼1 vol% submicron SiCp.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

References

  1. 1.

    X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Cheng, G. Chen, K.K. Deng, and H.Y. Wang: What is going on in magnesium alloys?J. Mater. Sci. Technol. 34, 245 (2018).

    Article  Google Scholar 

  2. 2.

    X.J. Wang, X.S. Hu, W.Q. Liu, J.F. Du, K. Wu, Y.D. Huang, and M.Y. Zheng: Ageing behavior of as-cast SiCp/AZ91 Mg matrix composites. Mater. Sci. Eng., A 682, 194 (2017).

    Google Scholar 

  3. 3.

    M.J. Shen, X.J. Wang, M.F. Zhang, M.Y. Zheng, and K. Wu: Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites. Compos. Sci. Technol. 118, 85 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    L.Q. Chen and Y.T. Yan: Microstructures and mechanical properties of magnesium matrix composites: A review. Acta Metall. Sin. (Engl. Lett.) 27, 762 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    K.K. Deng, X.J. Wang, Y.W. Wu, X.S. Hu, K. Wu, and W.M. Gan: Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite. Mater. Sci. Eng., A 543, 158 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    M.J. Shen, X.J. Wang, T. Ying, K. Wu, and W.J. Song: Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano SiC particles. J. Alloys Compd. 686, 831 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    K.K. Deng, J.Y. Shi, C.J. Wang, X.J. Wang, Y.W. Wu, K.B. Nie, and K. Wu: Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite. Composites, Part A 43, 1280 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    L.J. Zhang, F. Qiu, J.G. Wang, H.Y. Wang, and Q.C. Jiang: Microstructures and mechanical properties of the Al2014 composites reinforced with bimodal sized SiC particles. Mater. Sci. Eng., A 637, 70 (2015).

    Article  Google Scholar 

  9. 9.

    S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou, and J.F. Fan: Hot deformation behavior and workability characteristics of bimodal size SiCp/AZ91 magnesium matrix composite with processing map. Mater. Des. 64, 177 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, and D.D. Wang: Hot deformation behaviour of as-extruded micrometre SiCp reinforced AZ91 composite. Mater. Res. Innovations 19 (Suppl. 4), 117 (2015).

    Article  Google Scholar 

  11. 11.

    K.K. Deng, J.C. Li, F.J. Xu, K.B. Nie, and W. Liang: Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite. Mater. Des. 67, 72 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    K.K. Deng, X.J. Wang, M.Y. Zheng, and K. Wu: Dynamic recrystallization behavior during hot deformation and mechanical properties of 0.2 µm SiCp reinforced Mg matrix composite. Mater. Sci. Eng., A 560, 824 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    C.J. Wang, K.K. Deng, and W. Liang: High temperature damping behavior controlled by submicron SiCp in bimodal size particle reinforced magnesium matrix composite. Mater. Sci. Eng., A 668, 55 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    S.S. Zhou, K.K. Deng, J.C. Li, S.J. Shang, W. Liang, and J.F. Fan: Effects of volume ratio on the microstructure and mechanical properties of particle reinforced magnesium matrix composite. Mater. Des. 63, 672 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    M.R. Barnett, A.G. Beer, D. Atwell, and A. Oudin: Influence of grain size on hot working stresses and microstructures in Mg–3Al–1Zn. Scripta Mater. 51, 18 (2004).

    Article  Google Scholar 

  16. 16.

    T. Sakai and J.J. Jonas: Dynamic recrystallization: Mechanical and microstructural considerations. Acta Metall. 32, 189 (1984).

    CAS  Article  Google Scholar 

  17. 17.

    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Dynamic and post-dynamic recrystallization under hot, cold and sever plastic deformation conditions. Prog. Mater. Sci. 60, 130 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    K.K. Deng, J.C. Li, K.B. Nie, X.J. Wang, and J.F. Fan: High temperature damping behavior of as-deformed Mg matrix influenced by micron and submicron SiCp. Mater. Sci. Eng., A 624, 62 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    J.C. Li, K.B. Nie, K.K. Deng, S.J. Shang, S.S. Zhou, F.J. Xu, and J.F. Fan: Microstructure stability of as-extruded bimodal size SiCp/AZ91 composite. Mater. Sci. Eng., A 615, 489 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    F.J. Humphreys and P.N. Kalu: Dislocation-particle interactions during high temperature deformation of two-phase aluminium alloys. Acta Metall. 35, 2815 (1987).

    CAS  Article  Google Scholar 

  21. 21.

    I. Sabirov, M.R. Barnett, Y. Estrin, and P.D. Hodgson: The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy. Scripta Mater. 61, 181 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    S.C. Tjong and Z.Y. Ma: High-temperature creep behaviour of powder-metallurgy aluminium composites reinforced with SiC particles of various sizes. Compos. Sci. Technol. 59, 1117 (1999).

    CAS  Article  Google Scholar 

  23. 23.

    T.G. Nieh, J. Wadsworth, and O.D. Sherby: Superplasticity in Metals and Ceramics (Cambridge University Press, New York, 1997).

    Google Scholar 

  24. 24.

    S.S. Vagarali and T.G. Langdon: Deformation mechanisms in h.c.p. metals at elevated temperatures—II. Creep behavior of a Mg–0.8% Al solid solution alloy. Acta Mater. 30, 1157 (1982).

    CAS  Article  Google Scholar 

  25. 25.

    H.J. Frost and M.E. Ashby: Deformation Mechanism Maps (Pergamon Press, Oxford, 1982).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by “National Natural Science Foundation of China” (Grant No. 51771128), Projects of International Cooperation in Shanxi (Grant No. 201703D421039), and the “Natural Science Foundation of Shanxi” (Grant No. 201601D011034).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kun-kun Deng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Cj., Deng, Kk., Li, Jc. et al. Flow stress and deformation behavior of fine-grained Mg matrix influenced by bimodal size SiCp. Journal of Materials Research 33, 1723–1732 (2018). https://doi.org/10.1557/jmr.2018.135

Download citation