The microstructure and mechanical properties of Al2024-SiCp composite fabricated by powder thixoforming


In this study, SiC particle reinforced Al2024 matrix composites were fabricated by powder thixoforming (PT). Meanwhile, 2024 alloys were fabricated by permanent mold cast (PMC) and PT, respectively, to reveal superiorities of PT technology over the traditional processing technologies and the resulting composite over the matrix alloy. The microstructures and mechanical properties of the three materials were comparatively investigated. The results indicated that both the PT materials possessed finer spheroidal primary particles and smaller eutectic concentration, but the PMC alloy comprised large equiaxed grains, continuously net-shaped eutectic structures, and many porosities. The mechanical properties of the PT alloy were significantly higher than those of the PMC alloy because of the enhanced compactness and work hardening, decreased eutectic concentration, and fine primary particles. The incorporation of SiCp to the PT alloy further brought improvements, the ultimate tensile strength (UTS), yield strength (YS), and hardness were increased by 29.3% (UTS = 388 MPa), 35% (YS = 297 MPa), and 46.8% (hardness = 122.6 HV), respectively. A strengthening model considering different strengthening mechanisms and SiCp failure was proposed and YS of composite could be exactly predicted.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    T. Varol, A. Canakci, and S. Ozsahin: Modeling of the prediction of densification behavior of powder metallurgy Al–Cu–Mg/B4C composites using artificial neural networks. Acta Metall. Sin. (Engl. Lett.) 28, 182 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    A. Canakci and T. Varol: Microstructure and properties of AA7075/Al–SiC composites fabricated using powder metallurgy and hot pressing. Powder Technol. 268, 72 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    A. Canakci, F. Arslan, and T. Varol: Effect of volume fraction and size of B4C particles on production and microstructure properties of B4C reinforced aluminium alloy composites. Mater. Sci. Technol. 29, 954 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    T. Varol and A. Canakci: Synthesis and characterization of nanocrystalline Al 2024–B4C composite powders by mechanical alloying. Philos. Mag. Lett. 93, 339 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    T. Varol and A. Canakci: The effect of type and ratio of reinforcement on the synthesis and characterization Cu-based nanocomposites by flake powder metallurgy. J. Alloys Compd. 649, 1066 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    A. Canakci, F. Arslan, and T. Varol: Physical and mechanical properties of stir-casting processed AA2024/B4Cp composites. Sci. Eng. Compos. Mater. 21, 505 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    C. Zhang, Z.Y. Cai, R.C. Wang, C.Q. Peng, K. Qiu, and N.G. Wang: Microstructure and thermal properties of Al/W-coated diamond composites prepared by powder metallurgy. Mater. Des. 95, 39 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    C.M. Chen, C.C. Yang, and C.G. Chao: Thixocasting of hypereutectic Al–25Si–2.5Cu–1Mg–0.5Mn alloys using densified powder compacts. Mater. Sci. Eng., A 366, 183 (2004).

    Article  CAS  Google Scholar 

  9. 9.

    P.B. Li, T.J. Chen, S.Q. Zhang, and R.G. Guan: Research on semisolid microstructural evolution of 2024 aluminum alloy prepared by powder thixoforming. Metals 5, 547 (2015).

    Article  Google Scholar 

  10. 10.

    Y.S. Chen, T.J. Chen, S.Q. Zhang, and P.B. Li: Effects of processing parameters on microstructure and mechanical properties of powder-thixoforged 6061 aluminum alloy. Trans. Nonferrous Met. Soc. China 25, 699 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    P.B. Li and T.J. Chen: Effect of SiCp volume fraction on the microstructure and tensile properties of SiCp/2024 Al-based composites prepared by powder thixoforming. J. Mater. Res. 31, 2850 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Z. Zhang and D.L. Chen: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 54, 1321 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    A. Sanaty-Zadeh: Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Mater. Sci. Eng., A 531, 112 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    M.C. Flemings: Behavior of metal alloys in the semisolid state. Metall. Mater. Trans. B 22, 957 (1991).

    Article  Google Scholar 

  15. 15.

    D.H. Kirkwood: Semisolid metal processing. Int. Mater. Rev. 39, 173 (1994).

    CAS  Article  Google Scholar 

  16. 16.

    K. Sukumaran, K.K. Ravikumar, S.G.K. Pillai, T.P.D. Rajan, M. Ravi, R.M. Pillai, and B.C. Pai: Studies on squeeze casting of Al 2124 alloy and 2124-10% SiCp metal matrix composite. Mater. Sci. Eng., A 490, 235 (2008).

    Article  CAS  Google Scholar 

  17. 17.

    Y. Cai, M.J. Tan, G.J. Shen, and H.Q. Su: Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite. Mater. Sci. Eng., A 282, 232 (2000).

    Article  Google Scholar 

  18. 18.

    T.J. Chen, L.K. Huang, X.F. Huang, Y. Ma, and Y. Hao: Effects of reheating temperature and time on microstructure and tensile properties of thixoforged AZ63 magnesium alloy. Mater. Sci. Technol. 30, 96 (2014).

    Article  CAS  Google Scholar 

  19. 19.

    G.K. Williamson and W.H. Hall: X-ray line broadening from filed aluminum and wolfram. Acta Metall. 1, 22 (1953).

    CAS  Article  Google Scholar 

  20. 20.

    G.K. Williamson and R.E. Smallman: The use of Fourier analysis in the interpretation of X-ray line broadening from cold-worked iron and molybdenum. Acta Crystallogr. 7, 574 (1954).

    CAS  Article  Google Scholar 

  21. 21.

    N.P. Cheng, S.M. Zeng, and Z.Y. Liu: Preparation, microstructures and deformation behavior of SiCP/6066Al composites produced by PM route. J. Mater. Process. Technol. 202, 27 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    S-J. Hong, H-M. Kim, D. Huh, C. Suryanarayana, and B.S. Chun: Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites. Mater. Sci. Eng., A 347, 198 (2003).

    Article  Google Scholar 

  23. 23.

    H. Su, W.L. Gao, C. Mao, H. Zhang, H.B. Liu, J. Lu, and Z. Lu: Microstructures and mechanical properties of SiCp/2024 aluminum matrix composite synthesized by stir casting. Chin. J. of Nonferrous Met. 20, 217 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    M. Emamy, M. Oliayee, and K. Tavighi: Microstructures and tensile properties of Al/2024–Al4Sr composite after hot extrusion and T6 heat treatment. Mater. Sci. Eng., A 625, 303 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    R.J. Arsenault, L. Wang, and C.R. Feng: Strengthening of composites due to microstructural changes in the matrix. Acta Metall. Mater. 39, 47 (1991).

    CAS  Article  Google Scholar 

  26. 26.

    V.C. Nardone and K.M. Prewo: On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr. Metall. 20, 43 (1986).

    CAS  Article  Google Scholar 

  27. 27.

    S.A. Sajjadi, H.R. Ezatpour, and M. Torabi Parizi: Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater. Des. 34, 106 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Z.L. Shi, J.M. Yang, J.C. Lee, D. Zhang, H.I. Lee, and R.J. Wu: The interfacial characterization of oxidized SiC(p)/2014 Al composites. Mater. Sci. Eng., A 303, 46 (2001).

    Article  Google Scholar 

  29. 29.

    R.J. Arsenault, N. Shi, C.R. Feng, and L. Wang: Localized deformation of SiC Al composites. Mater. Sci. Eng., A 131, 55 (1991).

    Article  Google Scholar 

  30. 30.

    H. Sekine and R. Chen: A combined microstructure strengthening analysis of SiCp/Al metal matrix composites. Composites 26, 183 (1995).

    CAS  Article  Google Scholar 

  31. 31.

    W.S. Miller and F.J. Humphreys: Strengthening mechanisms in particulate metal matrix composites. Scr. Metall. Mater. 25, 33 (1991).

    CAS  Article  Google Scholar 

  32. 32.

    N. Ramakrishnan: An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Mater. 44, 69 (1996).

    CAS  Article  Google Scholar 

  33. 33.

    Z. Zhang and D.L. Chen: Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng., A 483–484, 148 (2008).

    Article  CAS  Google Scholar 

  34. 34.

    N. Hansen: The effect of grain size and strain on the tensile flow stress of aluminium at room temperature. Acta Metall. 25, 863 (1977).

    CAS  Article  Google Scholar 

  35. 35.

    C.A. Lewis and P.J. Withers: Weibull modelling of particle cracking in metal matrix composites. Acta Metall. Mater. 43, 3685 (1995).

    CAS  Article  Google Scholar 

  36. 36.

    M. Li, S. Ghosh, O. Richmond, H. Weiland, and T.N. Rouns: Three dimensional characterization and modeling of particle reinforced metal matrix composites part II: Damage characterization. Mater. Sci. Eng., A 266, 221 (1999).

    Article  Google Scholar 

  37. 37.

    W.J. Clegg, I. Horsfall, J.F. Mason, and L. Edwards: The tensile deformation and fracture of Al-“Saffil” metal–matrix composites. Acta Metall. 36, 2151 (1988).

    CAS  Article  Google Scholar 

  38. 38.

    J.C. Lee and K.N. Subramanian: Failure behaviour of particulate-reinforced aluminium alloy composites under uniaxial tension. J. Mater. Sci. 27, 5453 (1992).

    CAS  Article  Google Scholar 

  39. 39.

    M. Song and D.H. Xiao: Modeling the fracture toughness and tensile ductility of SiCp/Al metal matrix composites. Mater. Sci. Eng., A 474, 371 (2008).

    Article  CAS  Google Scholar 

  40. 40.

    C. González and J. Llorca: Prediction of the tensile stress-strain curve and ductility in Al/SiC composites. Scr. Mater. 35, 91 (1996).

    Article  Google Scholar 

  41. 41.

    H.K. Lee: A computational approach to the investigation of impact damage evolution in discontinuously reinforced fiber composites. Comput. Mech. 27, 504 (2001).

    Article  Google Scholar 

  42. 42.

    T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composites (Cambridge University Press, New York, 1995); pp. 166–217.

    Google Scholar 

  43. 43.

    M. Song, C.Q. Xie, and Y.H. He: Model of effects of particle failure on yield stress of SiC reinforced aluminum alloy composites. Chin. J. of Nonferrous Met. 20, 244 (2010).

    CAS  Google Scholar 

  44. 44.

    T.S. Srivatsan, T.S. Sudarshan, and E.J. Lavernia: Processing of discontinuously-reinforced metal matrix composites by rapid solidification. Prog. Mater. Sci. 39, 317 (1995).

    CAS  Article  Google Scholar 

  45. 45.

    P.K. Rohatgi, S. Ray, R. Asthana, and C.S. Narendranath: Interfaces in cast metal-matrix composites. Mater. Sci. Eng., A 162, 163 (1993).

    Article  Google Scholar 

  46. 46.

    J.W. Ju and H.K. Lee: A micromechanical damage model for effective elastoplastic behavior of ductile matrix composites considering evolutionary complete particle debonding. Comput. Method. Appl. Mech. Eng. 183, 201 (2000).

    Article  Google Scholar 

Download references


The authors wish to express thanks for the financial support provided by the Basic Scientific Fund of Gansu University (Grant No. G2014-07), the Program for New Century Excellent Talents of the University of China (Grant No. NCET-10-0023), and the Program for Hongliu Outstanding Youth of the Lanzhou University of Technology.

Author information



Corresponding author

Correspondence to Tijun Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, P., Chen, T. & Qin, H. The microstructure and mechanical properties of Al2024-SiCp composite fabricated by powder thixoforming. Journal of Materials Research 32, 2079–2091 (2017).

Download citation