Graphene based biosensors—Accelerating medical diagnostics to new-dimensions

Abstract

Graphene has emerged as a champion material for a variety of applications cutting across multiple disciplines in science and engineering. Graphene and its derivatives have displayed huge potential as a biosensing material due to their unique physicochemical properties, good electrical conductivity, optical properties, biocompatibility, ease of functionalization, and flexibility. Their widespread use in making biosensors has opened up new possibilities for early diagnosis of life-threatening diseases and real-time health monitoring. Following an introduction and discussion on the significance of fabrication protocols and assembly, this review is intended to assess why graphene is suitable to build better biosensors, the working of existing biosensing schemes and their current status toward commercialization for wearable diagnostic and prognostic devices. We believe this review will provide a critical insight for harnessing graphene as a suitable biosensor for the clinical diagnostics, its future prospects and challenges ahead.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.

References

  1. 1.

    S.P. Mohanty and E. Kougianos: Biosensors: A tutorial review. IEEE Potentials 25(2), 35 (2006).

    Article  Google Scholar 

  2. 2.

    A. Darwish and A.E. Hassanien: Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors 11(6), 5561 (2011).

    Article  Google Scholar 

  3. 3.

    P. Mehrotra: Biosensors and their applications—A review. J. Oral. Biol. Craniofac. Res. 6(2), 153 (2016).

    Article  Google Scholar 

  4. 4.

    S. Wang, T. Chinnasamy, M.A. Lifson, F. Inci, and U. Demirci: Flexible substrate-based devices for point-of-care diagnostics. Trends Biotechnol. 34(11), 909 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    S.A. Soper and A. Rasooly: Cancer: A global concern that demands new detection technologies. Analyst 141(2), 367 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    S. Gs, A. Cv, and B.B. Mathew: Biosensors: A modern day achievement. J. Instrum. Technol. 2(1), 26 (2014).

    Google Scholar 

  7. 7.

    A. Nehra and K. Pal Singh: Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosens. Bioelectron. 74, 731 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    M. Holzinger, A. Le Goff, and S. Cosnier: Nanomaterials for biosensing applications: A review. Front. Chem. 2 (2014), doi: https://doi.org/10.3389/fchem.2014.00063.

  9. 9.

    A.B. Chinen, C.M. Guan, J.R. Ferrer, S.N. Barnaby, T.J. Merkel, and C.A. Mirkin: Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 115(19), 10530 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang: Carbon nanotube based biosensors. Sens. Actuators, B 207(Part A), 690 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    T-T. Tran and A. Mulchandani: Carbon nanotubes and graphene nano field-effect transistor-based biosensors. TrAC, Trends Anal. Chem. 79, 222 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    A.B. Kaul: Two-dimensional layered materials: Structure, properties, and prospects for device applications. J. Mater. Res. 29(3), 348 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6(3), 183 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B.H. Hong, J-H. Ahn, J.M. Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A.D. Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    L. Feng, L. Wu, and X. Qu: New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater. 25(2), 168 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    D. Sharma, S. Kanchi, M.I. Sabela, and K. Bisetty: Insight into the biosensing of graphene oxide: Present and future prospects. Arabian J. Chem. 9(2), 238 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    C.S. Park, H. Yoon, and O.S. Kwon: Graphene-based nanoelectronic biosensors. J. Ind. Eng. Chem. 38, 13 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    D. Du, Y. Yang, and Y. Lin: Graphene-based materials for biosensing and bioimaging. MRS Bull. 37(12), 1290 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    N. Celik, W. Balachandran, and N. Manivannan: Graphene-based biosensors: Methods, analysis and future perspectives. IET Circ. Device. Syst. 9(6), 434 (2015).

    Article  Google Scholar 

  20. 20.

    E. Morales-Narváez, L. Baptista-Pires, A. Zamora-Gálvez, and A. Merkoçi: Graphene-based biosensors: Going simple. Adv. Mater. 29(7) (2016), doi: https://doi.org/10.1002/adma.201604905.

    Google Scholar 

  21. 21.

    S.M.A. Cruz, A.F. Girão, G. Gonçalves, and P.A.A.P. Marques: Graphene: The missing piece for cancer diagnosis?Sensors 16(1), E137 (2016).

    Article  Google Scholar 

  22. 22.

    M. Pumera: Graphene in biosensing. Mater. Today 14(7–8), 308 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    J. Lee, J. Kim, S. Kim, and D-H. Min: Biosensors based on graphene oxide and its biomedical application. Adv. Drug Delivery Rev. 105(Part B), 275 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Y. Liu, X. Dong, and P. Chen: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41(6), 2283 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    X. Zhu, Y. Liu, P. Li, Z. Nie, and J. Li: Applications of graphene and its derivatives in intracellular biosensing and bioimaging. Analyst 141(15), 4541 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    L.C. Clark and C. Lyons: Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102(1), 29 (1962).

    CAS  Article  Google Scholar 

  27. 27.

    P. Pandey, M. Datta, and B.D. Malhotra: Prospects of nanomaterials in biosensors. Anal. Lett. 41(2), 159 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    P. Malik, V. Katyal, V. Malik, A. Asatkar, G. Inwati, and T.K. Mukherjee: Nanobiosensors: Concepts and variations. Int. Scholarly Res. Not. 2013, e327435 (2013).

    Google Scholar 

  29. 29.

    E. Juanola-Feliu, P.L. Miribel-Català, C. Páez Avilés, J. Colomer-Farrarons, M. González-Piñero, and J. Samitier: Design of a customized multipurpose nano-enabled implantable system for in vivo theranostics. Sensors 14(10), 19275 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    E. Ghafar-Zadeh: Wireless integrated biosensors for point-of-care diagnostic applications. Sensors 15(2), 3236 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004).

    CAS  Article  Google Scholar 

  32. 32.

    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009).

    Article  CAS  Google Scholar 

  33. 33.

    E. Morales-Narváez and A. Merkoçi: Graphene oxide as an optical biosensing platform. Adv. Mater. 24(25), 3298 (2012).

    Article  CAS  Google Scholar 

  34. 34.

    R.R. Nair, W.C. Ren, R. Jalil, I. Riaz, V.G. Kravets, L. Britnell, P. Blake, F. Schedin, A.S. Mayorov, S. Yuan, M.I. Katsnelson, H.M. Cheng, W. Strupinski, L.G. Bulusheva, A.V. Okotrub, I.V. Grigorieva, A.N. Grigorenko, K.S. Novoselov, and A.K. Geim: Fluorographene: Two dimensional counterpart of teflon. Small 6(24), 2877 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    J. Yao, Y. Sun, M. Yang, and Y. Duan: Chemistry, physics and biology of graphene-based nanomaterials: New horizons for sensing, imaging and medicine. J. Mater. Chem. 22(29), 14313 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, and P. Chen: Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 11(14), 1620 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    M. Nurunnabi, K. Parvez, M. Nafiujjaman, V. Revuri, H.A. Khan, X. Feng, and Y. Lee: Bioapplication of graphene oxide derivatives: Drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv. 5(52), 42141 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    V. Urbanová, F. Karlický, A. Matěj, F. Šembera, Z. Janoušek, J.A. Perman, V. Ranc, K. Čépe, J. Michl, M. Otyepka, and R. Zbořil: Fluorinated graphenes as advanced biosensors—Effect of fluorine coverage on electron transfer properties and adsorption of biomolecules. Nanoscale 8(24), 12134 (2016).

    Article  CAS  Google Scholar 

  39. 39.

    P. Avouris: Graphene: Electronic and photonic properties and devices. Nano Lett. 10(11), 4285 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan: Graphene: An emerging electronic material. Adv. Mater. 24(43), 5782 (2012).

    CAS  Article  Google Scholar 

  42. 42.

    X. Du, I. Skachko, A. Barker, and E.Y. Andrei: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491 (2008).

    CAS  Article  Google Scholar 

  43. 43.

    K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100(1), 016602 (2008).

    CAS  Article  Google Scholar 

  45. 45.

    V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, and R. Zboril: Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116(9), 5464 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, and K.S. Kim: Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    C.K. Chua and M. Pumera: Covalent chemistry on graphene. Chem. Soc. Rev. 42(8), 3222 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    M. Mandal, A. Maitra, T. Das, and C.K. Das: Graphene and related two-dimensional materials. In Graphene Materials: Fundamentals and Emerging Applications, A. Tiwari and M. Syväjärvi, eds. (John Wiley & Sons, Inc., Hoboken, 2015); pp. 3–23.

    Google Scholar 

  49. 49.

    M.J. Allen, V.C. Tung, and R.B. Kaner: Honeycomb carbon: A review of graphene. Chem. Rev. 110(1), 132 (2010).

    CAS  Article  Google Scholar 

  50. 50.

    Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin: Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 29(5), 205 (2011).

    Article  CAS  Google Scholar 

  51. 51.

    K. Yang, Y. Li, X. Tan, R. Peng, and Z. Liu: Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9(9–10), 1492 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    A. Bianco: Graphene: Safe or toxic? The two faces of the medal. Angew. Chem., Int. Ed. 52(19), 4986 (2013).

    CAS  Article  Google Scholar 

  53. 53.

    L. Ou, B. Song, H. Liang, J. Liu, X. Feng, B. Deng, T. Sun, and L. Shao: Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57 (2016).

    Article  CAS  Google Scholar 

  54. 54.

    M. Pelin, L. Fusco, V. León, C. Martín, A. Criado, S. Sosa, E. Vázquez, A. Tubaro, and M. Prato: Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci. Rep. 7, 40572 (2017).

    CAS  Article  Google Scholar 

  55. 55.

    K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, and D. Cui: Biocompatibility of graphene oxide. Nanoscale Res. Lett. 6(1), 8 (2010).

    Article  CAS  Google Scholar 

  56. 56.

    A. Schinwald, F.A. Murphy, A. Jones, W. MacNee, and K. Donaldson: Graphene-based nanoplatelets: A new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6(1), 736 (2012).

    CAS  Article  Google Scholar 

  57. 57.

    J-H. Liu, S-T. Yang, H. Wang, Y. Chang, A. Cao, and Y. Liu: Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine 7(12), 1801 (2012).

    CAS  Article  Google Scholar 

  58. 58.

    X. Guo and N. Mei: Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 22(1), 105 (2014).

    CAS  Article  Google Scholar 

  59. 59.

    M. Xu, J. Zhu, F. Wang, Y. Xiong, Y. Wu, Q. Wang, J. Weng, Z. Zhang, W. Chen, and S. Liu: Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: Poly(acrylic acid)-functionalization is superior to PEGylation. ACS Nano 10(3), 3267 (2016).

    CAS  Article  Google Scholar 

  60. 60.

    N.R. Jacobsen, G. Pojana, P. White, P. Møller, C.A. Cohn, K.S. Korsholm, U. Vogel, A. Marcomini, S. Loft, and H. Wallin: Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FE1-Mutatrade markMouse lung epithelial cells. Environ. Mol. Mutagen. 49(6), 476 (2008).

    CAS  Article  Google Scholar 

  61. 61.

    S. Bengtson, K. Kling, A.M. Madsen, A.W. Noergaard, N.R. Jacobsen, P.A. Clausen, B. Alonso, A. Pesquera, A. Zurutuza, R. Ramos, H. Okuno, J. Dijon, H. Wallin, and U. Vogel: No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro. Environ. Mol. Mutagen. 57(6), 469 (2016).

    CAS  Article  Google Scholar 

  62. 62.

    K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, and Z. Liu: The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33(7), 2206 (2012).

    CAS  Article  Google Scholar 

  63. 63.

    N. Morimoto, T. Kubo, and Y. Nishina: Tailoring the oxygen content of graphite and reduced graphene oxide for specific applications. Sci. Rep. 6, 21715 (2016).

    CAS  Article  Google Scholar 

  64. 64.

    W. Choi, I. Lahiri, R. Seelaboyina, and Y.S. Kang: Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci. 35(1), 52 (2010).

    CAS  Article  Google Scholar 

  65. 65.

    M. Pumera: Electrochemistry of graphene: New horizons for sensing and energy storage. Chem. Rec. 9(4), 211 (2009).

    CAS  Article  Google Scholar 

  66. 66.

    R.S. Edwards and K.S. Coleman: Graphene synthesis: Relationship to applications. Nanoscale 5(1), 38 (2012).

    Article  Google Scholar 

  67. 67.

    F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A.C. Ferrari: Production and processing of graphene and 2d crystals. Mater. Today 15(12), 564 (2012).

    CAS  Article  Google Scholar 

  68. 68.

    D. Wei and Y. Liu: Controllable synthesis of graphene and its applications. Adv. Mater. 22(30), 3225 (2010).

    CAS  Article  Google Scholar 

  69. 69.

    R.Y.N. Gengler, K. Spyrou, and P. Rudolf: A roadmap to high quality chemically prepared graphene. J. Phys. D: Appl. Phys. 43(37), 374015 (2010).

    Article  CAS  Google Scholar 

  70. 70.

    H. Gao and H. Duan: 2D and 3D graphene materials: Preparation and bioelectrochemical applications. Biosens. Bioelectron. 65, 404 (2015).

    CAS  Article  Google Scholar 

  71. 71.

    S. Pei and H-M. Cheng: The reduction of graphene oxide. Carbon 50(9), 3210 (2012).

    CAS  Article  Google Scholar 

  72. 72.

    S. Thakur and N. Karak: Alternative methods and nature-based reagents for the reduction of graphene oxide: A review. Carbon 94, 224 (2015).

    CAS  Article  Google Scholar 

  73. 73.

    S.R. Dhakate, N. Chauhan, S. Sharma, J. Tawale, S. Singh, P.D. Sahare, and R.B. Mathur: An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon 49(6), 1946 (2011).

    CAS  Article  Google Scholar 

  74. 74.

    S.R. Dhakate, N. Chauhan, S. Sharma, and R.B. Mathur: The production of multi-layer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes. Carbon 49(13), 4170 (2011).

    CAS  Article  Google Scholar 

  75. 75.

    N. Mishra, J. Boeckl, N. Motta, and F. Iacopi: Graphene growth on silicon carbide: A review. Phys. Status Solidi A 213(9), 2277 (2016).

    CAS  Article  Google Scholar 

  76. 76.

    Y. Zhang, L. Zhang, and C. Zhou: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329 (2013).

    CAS  Article  Google Scholar 

  77. 77.

    J.J. Richardson, M. Björnmalm, and F. Caruso: Technology-driven layer-by-layer assembly of nanofilms. Science 348(6233), aaa2491 (2015).

    Article  CAS  Google Scholar 

  78. 78.

    Z. Matharu, A.J. Bandodkar, V. Gupta, and B.D. Malhotra: Fundamentals and application of ordered molecular assemblies to affinity biosensing. Chem. Soc. Rev. 41(3), 1363 (2012).

    CAS  Article  Google Scholar 

  79. 79.

    G. Zeng, Y. Xing, J. Gao, Z. Wang, and X. Zhang: Unconventional layer-by-layer assembly of graphene multilayer films for enzyme-based glucose and maltose biosensing. Langmuir 26(18), 15022 (2010).

    CAS  Article  Google Scholar 

  80. 80.

    J.S. Park, S.M. Cho, W-J. Kim, J. Park, and P.J. Yoo: Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets. ACS Appl. Mater. Interfaces 3(2), 360 (2011).

    CAS  Article  Google Scholar 

  81. 81.

    T. Lee, S.H. Min, M. Gu, Y.K. Jung, W. Lee, J.U. Lee, D.G. Seong, and B-S. Kim: Layer-by-layer assembly for graphene-based multilayer nanocomposites: Synthesis and applications. Chem. Mater. 27(11), 3785 (2015).

    CAS  Article  Google Scholar 

  82. 82.

    L.J. Cote, F. Kim, and J. Huang: Langmuir–Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131(3), 1043 (2009).

    CAS  Article  Google Scholar 

  83. 83.

    B.G. Choi, H. Park, T.J. Park, M.H. Yang, J.S. Kim, S-Y. Jang, N.S. Heo, S.Y. Lee, J. Kong, and W.H. Hong: Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5), 2910 (2010).

    CAS  Article  Google Scholar 

  84. 84.

    J. Tian, P-X. Yuan, D. Shan, S-N. Ding, G-Y. Zhang, and X-J. Zhang: Biosensing platform based on graphene oxide via self-assembly induced by synergic interactions. Anal. Biochem. 460, 16 (2014).

    CAS  Article  Google Scholar 

  85. 85.

    J-J. Shao, W. Lv, and Q-H. Yang: Self-assembly of graphene oxide at interfaces. Adv. Mater. 26(32), 5586 (2014).

    CAS  Article  Google Scholar 

  86. 86.

    N. Chauhan, V. Palaninathan, S. Raveendran, A.C. Poulose, Y. Nakajima, T. Hasumura, T. Uchida, T. Hanajiri, T. Maekawa, and D.S. Kumar: N2-plasma-assisted one-step alignment and patterning of graphene oxide on a SiO2/Si substrate via the Langmuir–Blodgett technique. Adv. Mater. Interfaces 2(5) (2015), doi: https://doi.org/10.1002/admi.201400515.

    Google Scholar 

  87. 87.

    D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F.J.G. de Abajo, V. Pruneri, and H. Altug: Mid-infrared plasmonic biosensing with graphene. Science 349(6244), 165 (2015).

    CAS  Article  Google Scholar 

  88. 88.

    B. Zribi, J-M. Castro-Arias, D. Decanini, N. Gogneau, D. Dragoe, A. Cattoni, A. Ouerghi, H. Korri-Youssoufi, and A-M. Haghiri-Gosnet: Large area graphene nanomesh: An artificial platform for edge-electrochemical biosensing at the sub-attomolar level. Nanoscale 8(34), 15479 (2016).

    CAS  Article  Google Scholar 

  89. 89.

    M.G. Santonicola, M.G. Coscia, M. Sirilli, and S. Laurenzi: Nanomaterial-based biosensors for a real-time detection of biological damage by UV light. In Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (IEEE Eng. Med. Biol. Soc. Annu. Conf. 2015, 2015); p. 4391.

  90. 90.

    M.S. Artiles, C.S. Rout, and T.S. Fisher: Graphene-based hybrid materials and devices for biosensing. Adv. Drug Delivery Rev. 63(14–15), 1352 (2011).

    CAS  Article  Google Scholar 

  91. 91.

    Z. Dong, D. Wang, X. Liu, X. Pei, L. Chen, and J. Jin: Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. J. Mater. Chem. A 2(14), 5034 (2014).

    CAS  Article  Google Scholar 

  92. 92.

    L. Wang, J.A. Jackman, W.B. Ng, and N-J. Cho: Flexible, graphene-coated biocomposite for highly sensitive, real-time molecular detection. Adv. Funct. Mater. 26(47), 8623 (2016).

    CAS  Article  Google Scholar 

  93. 93.

    S. Liu and X. Guo: Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Mater. 4(8), e23 (2012).

    Article  CAS  Google Scholar 

  94. 94.

    Y. Ohno, K. Maehashi, and K. Matsumoto: Front. Graphene Carbon Nanotub., K. Matsumoto, ed. (Springer, Japan, 2015); pp. 91–103.

  95. 95.

    S. Okamoto, Y. Ohno, K. Maehashi, K. Inoue, and K. Matsumoto: Immunosensors based on graphene field-effect transistors fabricated using antigen-binding fragment. Jpn. J. Appl. Phys. 51(6S), 06FD08 (2012).

    Article  Google Scholar 

  96. 96.

    G. Saltzgaber, P. Wojcik, T. Sharf, M.R. Leyden, J.L. Wardini, C.A. Heist, A.A. Adenuga, V.T. Remcho, and E.D. Minot: Scalable graphene field-effect sensors for specific protein detection. Nanotechnology 24(35), 355502 (2013).

    Article  CAS  Google Scholar 

  97. 97.

    S. Viswanathan, T.N. Narayanan, K. Aran, K.D. Fink, J. Paredes, P.M. Ajayan, S. Filipek, P. Miszta, H.C. Tekin, F. Inci, U. Demirci, P. Li, K.I. Bolotin, D. Liepmann, and V. Renugopalakrishanan: Graphene–protein field effect biosensors: Glucose sensing. Mater. Today 18(9), 513 (2015).

    CAS  Article  Google Scholar 

  98. 98.

    Y. Yang, X. Yang, X. Zou, S. Wu, D. Wan, A. Cao, L. Liao, Q. Yuan, and X. Duan: Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv. Funct. Mater. (2016), doi: https://doi.org/10.1002/adfm.201604096.

    Google Scholar 

  99. 99.

    N. Mohanty and V. Berry: Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8(12), 4469 (2008).

    CAS  Article  Google Scholar 

  100. 100.

    Y.H. Kwak, D.S. Choi, Y.N. Kim, H. Kim, D.H. Yoon, S-S. Ahn, J-W. Yang, W.S. Yang, and S. Seo: Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens. Bioelectron. 37(1), 82 (2012).

    CAS  Article  Google Scholar 

  101. 101.

    A. Kakatkar, T.S. Abhilash, R.D. Alba, J.M. Parpia, and H.G. Craighead: Detection of DNA and poly-l-lysine using CVD graphene-channel FET biosensors. Nanotechnology 26(12), 125502 (2015).

    Article  CAS  Google Scholar 

  102. 102.

    N.S. Green and M.L. Norton: Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review. Anal. Chim. Acta 853, 127 (2015).

    CAS  Article  Google Scholar 

  103. 103.

    M. Zhang, C. Liao, C.H. Mak, P. You, C.L. Mak, and F. Yan: Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci. Rep. 5, 8311 (2015).

    CAS  Article  Google Scholar 

  104. 104.

    Y. Huang, X. Dong, Y. Liu, L-J. Li, and P. Chen: Graphene-based biosensors for detection of bacteria and their metabolic activities. J. Mater. Chem. 21(33), 12358 (2011).

    CAS  Article  Google Scholar 

  105. 105.

    S.S. Varghese, S.H. Varghese, S. Swaminathan, K.K. Singh, and V. Mittal: Two-dimensional materials for sensing: Graphene and beyond. Electronics 4(3), 651 (2015).

    CAS  Article  Google Scholar 

  106. 106.

    X. You and J.J. Pak: 2013 Transducers Eurosensors XXVII 17th Int. Conf. Solid-State Sens. Actuators Microsyst. (TRANSDUCERS EUROSENSORS XXVII, 2013); pp. 2443–2446.

    Google Scholar 

  107. 107.

    O.S. Kwon, H.S. Song, S.J. Park, S.H. Lee, J.H. An, J.W. Park, H. Yang, H. Yoon, J. Bae, T.H. Park, and J. Jang: An ultrasensitive, selective, multiplexed superbioelectronic nose that mimics the human sense of smell. Nano Lett. 15(10), 6559 (2015).

    CAS  Article  Google Scholar 

  108. 108.

    S. Myung, A. Solanki, C. Kim, J. Park, K.S. Kim, and K-B. Lee: Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv. Mater. 23(19), 2221 (2011).

    CAS  Article  Google Scholar 

  109. 109.

    S.M. Yoo and S.Y. Lee: Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 34(1), 7 (2016).

    CAS  Article  Google Scholar 

  110. 110.

    M.Y. Berezin and S. Achilefu: Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110(5), 2641 (2010).

    CAS  Article  Google Scholar 

  111. 111.

    K.P. Loh, Q. Bao, G. Eda, and M. Chhowalla: Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2(12), 1015 (2010).

    CAS  Article  Google Scholar 

  112. 112.

    G. Eda, Y-Y. Lin, C. Mattevi, H. Yamaguchi, H-A. Chen, I-S. Chen, C-W. Chen, and M. Chhowalla: Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22(4), 505 (2010).

    CAS  Article  Google Scholar 

  113. 113.

    J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G.G. Gurzadyan: The origin of fluorescence from graphene oxide. Sci. Rep. 2, 792 (2012).

    Article  CAS  Google Scholar 

  114. 114.

    R.P. Choudhary, S. Shukla, K. Vaibhav, P.B. Pawar, and S. Saxena: Optical properties of few layered graphene quantum dots. Mater. Res. Express 2(9), 95024 (2015).

    Article  CAS  Google Scholar 

  115. 115.

    J. Wang, S. Cao, Y. Ding, F. Ma, W. Lu, and M. Sun: Theoretical investigations of optical origins of fluorescent graphene quantum dots. Sci. Rep. 6, 24850 (2016).

    CAS  Article  Google Scholar 

  116. 116.

    J.A. McGuire: Growth and optical properties of colloidal graphene quantum dots. Phys. Status Solidi RRL 10(1), 91 (2016).

    CAS  Article  Google Scholar 

  117. 117.

    X-P. He and H. Tian: Photoluminescence architectures for disease diagnosis: From graphene to thin-layer transition metal dichalcogenides and oxides. Small 12(2), 144 (2016).

    CAS  Article  Google Scholar 

  118. 118.

    R. Romero-Aburto, T.N. Narayanan, Y. Nagaoka, T. Hasumura, T.M. Mitcham, T. Fukuda, P.J. Cox, R.R. Bouchard, T. Maekawa, D.S. Kumar, S.V. Torti, S.A. Mani, and P.M. Ajayan: Fluorinated graphene oxide; A new multimodal material for biological applications. Adv. Mater. 25(39), 5632 (2013).

    CAS  Article  Google Scholar 

  119. 119.

    T.D. Martins, A.C.C. Ribeiro, H.S. de Camargo, P.A. da C. Filho, H.P.M. Cavalcante, and D.L. Dias: New Insights on Optical Biosensors: Techniques, Construction and Application (InTech, Rijeka, 2013).

  120. 120.

    Z. Wang, H. Zeng, and L. Sun: Graphene quantum dots: Versatile photoluminescence for energy, biomedical, and environmental applications. J. Mater. Chem. C 3(6), 1157 (2015).

    CAS  Article  Google Scholar 

  121. 121.

    R. Xie, Z. Wang, W. Zhou, Y. Liu, L. Fan, Y. Li, and X. Li: Graphene quantum dots as smart probes for biosensing. Anal. Methods 8(20), 4001 (2016).

    CAS  Article  Google Scholar 

  122. 122.

    C. Zhu, D. Du, and Y. Lin: Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review. 2D Mater. 2(3), 32004 (2015).

    Article  CAS  Google Scholar 

  123. 123.

    H. Chang, L. Tang, Y. Wang, J. Jiang, and J. Li: Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 82(6), 2341 (2010).

    CAS  Article  Google Scholar 

  124. 124.

    Y. Wang, L. Tang, Z. Li, Y. Lin, and J. Li: In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet-based sensing platform in living cells. Nat. Protoc. 9(8), 1944 (2014).

    CAS  Article  Google Scholar 

  125. 125.

    S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan: A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 20(3), 453 (2010).

    CAS  Article  Google Scholar 

  126. 126.

    E. Morales-Narváez, T. Naghdi, E. Zor, and A. Merkoçi: Photoluminescent lateral-flow immunoassay revealed by graphene oxide: Highly sensitive paper-based pathogen detection. Anal. Chem. 87(16), 8573 (2015).

    Article  CAS  Google Scholar 

  127. 127.

    C-Y. Poon, Q. Li, J. Zhang, Z. Li, C. Dong, A.W-M. Lee, W-H. Chan, and H-W. Li: FRET-based modified graphene quantum dots for direct trypsin quantification in urine. Anal. Chim. Acta 917, 64 (2016).

    CAS  Article  Google Scholar 

  128. 128.

    Q. Wu, Y. Sun, P. Ma, D. Zhang, S. Li, X. Wang, and D. Song: Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide. Anal. Chim. Acta 913, 137 (2016).

    CAS  Article  Google Scholar 

  129. 129.

    D. Du, Z. Zou, Y. Shin, J. Wang, H. Wu, M.H. Engelhard, J. Liu, I.A. Aksay, and Y. Lin: Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal. Chem. 82(7), 2989 (2010).

    CAS  Article  Google Scholar 

  130. 130.

    B. Liang, L. Fang, G. Yang, Y. Hu, X. Guo, and X. Ye: Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene. Biosens. Bioelectron. 43, 131 (2013).

    CAS  Article  Google Scholar 

  131. 131.

    Q. Wu, Y. Hou, M. Zhang, X. Hou, L. Xu, N. Wang, J. Wang, and W. Huang: Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode. Anal. Methods 8(8), 1806 (2016).

    CAS  Article  Google Scholar 

  132. 132.

    H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari, L. Wang, H.J. Choi, T.D. Chung, N. Lu, T. Hyeon, S.H. Choi, and D-H. Kim: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11(6), 566 (2016).

    Article  CAS  Google Scholar 

  133. 133.

    Q. Gong, Y. Wang, and H. Yang: A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film. Biosens. Bioelectron. 89(Pt 1), 565 (2017).

    CAS  Article  Google Scholar 

  134. 134.

    S. Ge, L. Zhang, Y. Zhang, H. Liu, J. Huang, M. Yan, and J. Yu: Electrochemical K-562 cells sensor based on origami paper device for point-of-care testing. Talanta 145, 12 (2015).

    CAS  Article  Google Scholar 

  135. 135.

    F. Tehrani, L. Reiner, and B. Bavarian: Rapid prototyping of a high sensitivity graphene based glucose sensor strip. PLoS One 10(12), e0145036 (2015).

    Article  CAS  Google Scholar 

  136. 136.

    J. Kailashiya, N. Singh, S.K. Singh, V. Agrawal, and D. Dash: Graphene oxide-based biosensor for detection of platelet-derived microparticles: A potential tool for thrombus risk identification. Biosens. Bioelectron. 65, 274 (2015).

    CAS  Article  Google Scholar 

  137. 137.

    M. Zhu, C. Zeng, and J. Ye: Graphene-modified carbon fiber microelectrode for the detection of dopamine in mice hippocampus tissue. Electroanalysis 23(4), 907 (2011).

    CAS  Article  Google Scholar 

  138. 138.

    H. Gu, Y. Yu, X. Liu, B. Ni, T. Zhou, and G. Shi: Layer-by-layer self-assembly of functionalized graphene nanoplates for glucose sensing in vivo integrated with on-line microdialysis system. Biosens. Bioelectron. 32(1), 118 (2012).

    CAS  Article  Google Scholar 

  139. 139.

    M. Arvand and N. Ghodsi: A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of l-dopa in mouse brain extract and pharmaceuticals. J. Solid State Electrochem. 17(3), 775 (2013).

    CAS  Article  Google Scholar 

  140. 140.

    H. Gu, Y. Yang, X. Zhou, T. Zhou, and G. Shi: Online electrochemical method for continuous and simultaneous monitoring of glucose and l-lactate in vivo with graphene hybrids as the electrocatalyst. J. Electroanal. Chem. 730, 41 (2014).

    CAS  Article  Google Scholar 

  141. 141.

    K. Manibalan, V. Mani, C-H. Huang, S-T. Huang, and P-C. Chang: A new electrochemical substrate for rapid and sensitive in vivo monitoring of β-galactosidase gene expressions. Analyst 140(17), 6040 (2015).

    CAS  Article  Google Scholar 

  142. 142.

    T-C. Liu, M-C. Chuang, C-Y. Chu, W-C. Huang, H-Y. Lai, C-T. Wang, W-L. Chu, S-Y. Chen, and Y-Y. Chen: Implantable graphene-based neural electrode interfaces for electrophysiology and neurochemistry in in vivo hyperacute stroke model. ACS Appl. Mater. Interfaces 8(1), 187 (2016).

    CAS  Article  Google Scholar 

  143. 143.

    X. Wang, Q. Li, J. Xu, S. Wu, T. Xiao, J. Hao, P. Yu, and L. Mao: Rational design of bioelectrochemically multifunctional film with oxidase, ferrocene, and graphene oxide for development of in vivo electrochemical biosensors. Anal. Chem. 88(11), 5885 (2016).

    CAS  Article  Google Scholar 

  144. 144.

    S. Kumar, S. Kumar, S. Srivastava, B.K. Yadav, S.H. Lee, J.G. Sharma, D.C. Doval, and B.D. Malhotra: Reduced graphene oxide modified smart conducting paper for cancer biosensor. Biosens. Bioelectron. 73, 114 (2015).

    CAS  Article  Google Scholar 

  145. 145.

    B. Derkus: Applying the miniaturization technologies for biosensor design. Biosens. Bioelectron. 79, 901 (2016).

    CAS  Article  Google Scholar 

  146. 146.

    J.P. Lafleur, A. Jönsson, S. Senkbeil, and J.P. Kutter: Recent advances in lab-on-a-chip for biosensing applications. Biosens. Bioelectron. 76, 213 (2016).

    CAS  Article  Google Scholar 

  147. 147.

    P.K. Ang, A. Li, M. Jaiswal, Y. Wang, H.W. Hou, J.T.L. Thong, C.T. Lim, and K.P. Loh: Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett. 11(12), 5240 (2011).

    CAS  Article  Google Scholar 

  148. 148.

    L. Cao, L. Cheng, Z. Zhang, Y. Wang, X. Zhang, H. Chen, B. Liu, S. Zhang, and J. Kong: Visual and high-throughput detection of cancer cells using a graphene oxide-based FRET aptasensing microfluidic chip. Lab Chip 12(22), 4864 (2012).

    CAS  Article  Google Scholar 

  149. 149.

    H.J. Yoon, T.H. Kim, Z. Zhang, E. Azizi, T.M. Pham, C. Paoletti, J. Lin, N. Ramnath, M.S. Wicha, D.F. Hayes, D.M. Simeone, and S. Nagrath: Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat. Nanotechnol. 8(10), 735 (2013).

    CAS  Article  Google Scholar 

  150. 150.

    K. ul Hasan, M.H. Asif, M.U. Hassan, M.O. Sandberg, O. Nur, M. Willander, S. Fagerholm, and P. Strålfors: A miniature graphene-based biosensor for intracellular glucose measurements. Electrochim. Acta 174, 574 (2015).

    CAS  Article  Google Scholar 

  151. 151.

    F. Liu, Y. Piao, J.S. Choi, and T.S. Seo: Three-dimensional graphene micropillar based electrochemical sensor for phenol detection. Biosens. Bioelectron. 50, 387 (2013).

    CAS  Article  Google Scholar 

  152. 152.

    H.J. Yoon, A. Shanker, Y. Wang, M. Kozminsky, Q. Jin, N. Palanisamy, M.L. Burness, E. Azizi, D.M. Simeone, M.S. Wicha, J. Kim, and S. Nagrath: Tunable thermal-sensitive polymer–graphene oxide composite for efficient capture and release of viable circulating tumor cells. Adv. Mater. 28(24), 4891 (2016).

    CAS  Article  Google Scholar 

  153. 153.

    M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto, and M.C. McAlpine: Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).

    Article  CAS  Google Scholar 

  154. 154.

    A.Y. Zhu, F. Yi, J.C. Reed, H. Zhu, and E. Cubukcu: Optoelectromechanical multimodal biosensor with graphene active region. Nano Lett. 14(10), 5641 (2014).

    CAS  Article  Google Scholar 

  155. 155.

    P. Li, B. Zhang, and T. Cui: Towards intrinsic graphene biosensor: A label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection. Biosens. Bioelectron. 72, 168 (2015).

    CAS  Article  Google Scholar 

  156. 156.

    T-Y. Chen, P.T.K. Loan, C-L. Hsu, Y-H. Lee, J. Tse-Wei Wang, K-H. Wei, C-T. Lin, and L-J. Li: Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosens. Bioelectron. 41, 103 (2013).

    Article  CAS  Google Scholar 

  157. 157.

    S. Mao, K. Yu, J. Chang, D.A. Steeber, L.E. Ocola, and J. Chen: Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Sci. Rep. 3, 1696 (2013).

    Article  CAS  Google Scholar 

  158. 158.

    C. Yu, X. Chang, J. Liu, L. Ding, J. Peng, and Y. Fang: Creation of reduced graphene oxide based field effect transistors and their utilization in the detection and discrimination of nucleoside triphosphates. ACS Appl. Mater. Interfaces 7(20), 10718 (2015).

    CAS  Article  Google Scholar 

  159. 159.

    J.H. An, S.J. Park, O.S. Kwon, J. Bae, and J. Jang: High-performance flexible graphene aptasensor for mercury detection in mussels. ACS Nano 7(12), 10563 (2013).

    CAS  Article  Google Scholar 

  160. 160.

    L. He, Q. Wang, D. Mandler, M. Li, R. Boukherroub, and S. Szunerits: Detection of folic acid protein in human serum using reduced graphene oxide electrodes modified by folic-acid. Biosens. Bioelectron. 75, 389 (2016).

    CAS  Article  Google Scholar 

  161. 161.

    C-W. Lin, K-C. Wei, S. Liao, C-Y. Huang, C-L. Sun, P-J. Wu, Y-J. Lu, H-W. Yang, and C-C.M. Ma: A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis. Biosens. Bioelectron. 67, 431 (2015).

    CAS  Article  Google Scholar 

  162. 162.

    H.D. Jang, S.K. Kim, H. Chang, and J-W. Choi: 3D label-free prostate specific antigen (PSA) immunosensor based on graphene–gold composites. Biosens. Bioelectron. 63, 546 (2015).

    CAS  Article  Google Scholar 

  163. 163.

    T. Hu, L. Zhang, W. Wen, X. Zhang, and S. Wang: Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor. Biosens. Bioelectron. 77, 451 (2016).

    CAS  Article  Google Scholar 

  164. 164.

    Z. Fan, J. Wang, Y. Nie, L. Ren, B. Liu, and G. Liu: Metal-organic frameworks/graphene oxide composite: A new enzymatic immobilization carrier for hydrogen peroxide biosensors. J. Electrochem. Soc. 163(3), B32 (2016).

    CAS  Article  Google Scholar 

  165. 165.

    F. Liu, Y. Zhang, J. Yu, S. Wang, S. Ge, and X. Song: Application of ZnO/graphene and S6 aptamers for sensitive photoelectrochemical detection of SK-BR-3 breast cancer cells based on a disposable indium tin oxide device. Biosens. Bioelectron. 51, 413 (2014).

    CAS  Article  Google Scholar 

  166. 166.

    L. Baptista-Pires, B. Pérez-López, C.C. Mayorga-Martinez, E. Morales-Narváez, N. Domingo, M.J. Esplandiu, F. Alzina, C.M.S. Torres, and A. Merkoçi: Electrocatalytic tuning of biosensing response through electrostatic or hydrophobic enzyme–graphene oxide interactions. Biosens. Bioelectron. 61, 655 (2014).

    CAS  Article  Google Scholar 

  167. 167.

    S. Kurbanoglu, L. Rivas, S.A. Ozkan, and A. Merkoçi: Electrochemically reduced graphene and iridium oxide nanoparticles for inhibition-based angiotensin-converting enzyme inhibitor detection. Biosens. Bioelectron. 88, 122 (2017).

    CAS  Article  Google Scholar 

  168. 168.

    Z. Wang, P. Huang, A. Bhirde, A. Jin, Y. Ma, G. Niu, N. Neamati, and X. Chen: A nanoscale graphene oxide–peptide biosensor for real-time specific biomarker detection on the cell surface. Chem. Commun. 48(78), 9768 (2012).

    CAS  Article  Google Scholar 

  169. 169.

    M. Singh, M. Holzinger, M. Tabrizian, S. Winters, N.C. Berner, S. Cosnier, and G.S. Duesberg: Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors. J. Am. Chem. Soc. 137(8), 2800 (2015).

    CAS  Article  Google Scholar 

  170. 170.

    Q. Zhao, Y. Zhou, Y. Li, W. Gu, Q. Zhang, and J. Liu: Luminescent iridium(III) complex labeled DNA for graphene oxide-based biosensors. Anal. Chem. 88(3), 1892 (2016).

    CAS  Article  Google Scholar 

  171. 171.

    J.S. Lee, H-A. Joung, M-G. Kim, and C.B. Park: Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay. ACS Nano 6(4), 2978 (2012).

    CAS  Article  Google Scholar 

  172. 172.

    J.H. Jung, D.S. Cheon, F. Liu, K.B. Lee, and T.S. Seo: A graphene oxide based immuno-biosensor for pathogen detection. Angew. Chem., Int. Ed. 49(33), 5708 (2010).

    CAS  Article  Google Scholar 

  173. 173.

    Y.V. Stebunov, O.A. Aftenieva, A.V. Arsenin, and V.S. Volkov: Highly sensitive and selective sensor chips with graphene-oxide linking layer. ACS Appl. Mater. Interfaces 7(39), 21727 (2015).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge their sincere gratitude to the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan for the financial support under the program of the strategic research foundation at private universities S1101017, organized by the MEXT, Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dasappan Nair Sakthi Kumar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chauhan, N., Maekawa, T. & Kumar, D.N.S. Graphene based biosensors—Accelerating medical diagnostics to new-dimensions. Journal of Materials Research 32, 2860–2882 (2017). https://doi.org/10.1557/jmr.2017.91

Download citation