Portable solid rapid quantitative detection for Cu2+ ions: Tuning the detection range limits of fluorescent conducting polymer dots

Abstract

In this work, o-phenylenediamine-m-phenylenediamine copolymer dots (omCPs) with designed surface groups are synthesized and characterized. Here, we explored a simple, rapid semiquantitative detection system for Cu2+ with a wide detection range (5–7 orders of magnitude) based on the fluorescence in the solid state of omCPs and their tunable detection limits. The construction and application of the rapid semiquantitative detection system for Cu2+ are developed and demonstrated for the practical applications. What’s more, the detection limit can be modulated easily by adjusting the surface groups of these dots through the monomer dose control before the co-polymerization. Moreover, we demonstrated that this new technological approach is suitable for the semiquantitative determination of other ions pollutants (i.e., Na+, K+, Cu2+, Pb2+, Hg2+, and NO2) in environmental water.

This is a preview of subscription content, access via your institution.

SCHEME 1
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

References

  1. 1.

    R.M. Manez and F. Sancenon: Fluorgenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476 (2003).

    Article  CAS  Google Scholar 

  2. 2.

    S. Liu, J.Q. Tian, L. Wang, Y.W. Zhang, X.Y. Qin, Y.L. Luo, A.M. Asiri, A.O. AlYoubi, and X.P. Sun: Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 24, 2037–2041 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    L.D. Chebrolua, S. Thurakkala, and H.S. Balaramana: Selective and dual naked eye detection of Cu2+ and Hg2+ ions using a simple quinoline–carbaldehyde chemosensor. Sens. Actuators, B 204, 480–488 (2014).

    Article  CAS  Google Scholar 

  4. 4.

    R.R. Avirah, K. Jyothish, and D. Ramaiah: Dual-mode semisquaraine-based sensor for selective detection of Hg2+ in a micellar medium. Org. Lett. 9, 121–124 (2006).

    Article  CAS  Google Scholar 

  5. 5.

    X.Q. Chen, Y. Zhou, X.J. Peng, and J.Y. Yoon: Fluorescent and colorimetric probes for detection of thiols. Chem. Soc. Rev. 39, 2120–2135 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    T.E. Wood and A. Thompson: Advances in the chemistry of dipyrrins and their complexes. Chem. Rev. 107, 1831–1861 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    G. Ulrich, R. Ziessel, and A. Harriman: The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angew. Chem., Int. Ed. 47, 1184–1201 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    J. Sun, S. Yang, Z. Wang, H. Shen, T. Xu, L. Sun, H. Li, W. Chen, X. Jiang, G. Ding, Z. Kang, X. Xie, and M. Jiang: Ultra-high quantum yield of graphene quantum dots: Aromatic-nitrogen doping and photoluminescence mechanism. Part. Part. Syst. Charact. 32, 434–440 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    M. Taki, S. Iyoshi, A. Ojida, I. Hamachi, and Y. Yamamoto: Development of highly sensitive fluorescent probes for detection of intracellular copper(I) in living systems. J. Am. Chem. Soc. 132, 5938–5939 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    C.S. Wu, M.K.K. Oo, and X.D. Fan: Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano 4, 5897–5904 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    P. Yang, Y. Zhao, Y. Lu, Q.Z. Xu, X.W. Xu, L. Dong, and S.H. Yu: Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: A fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions. ACS Nano 5, 2147–2154 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    X.Q. Wang, G. Ye, and X.G. Wang: Hydrogel diffraction gratings functionalized with crown ether for heavy metal ion detection. Sens. Actuators, B 193, 413–419 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    H.J. Sun, N. Gao, L. Wu, J.S. Ren, W.L. Wei, and X.G. Qu: Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chem.–Eur. J. 19, 13362–13368 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    X. Yang and E.K. Wang: A nanoparticle autocatalytic sensor for Ag+ and Cu2+ ions in aqueous solution with high sensitivity and selectivity and its application in test paper. Anal. Chem. 83, 5005–5011 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    G.H. Chen, W.Y. Chen, Y.C. Yen, C.W. Wang, H.T. Chang, and C.F. Chen: Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 86, 6843–6849 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    M. Wang, X.M. Liu, H.Z. Lu, H.M. Wang, and Z.H. Qin: Highly selective and reversible chemosensor for Pd2+ detected by fluorescence, colorimetry, and test paper. ACS Appl. Mater. Interfaces 7, 1284–1289 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    S. Chaiyoa, W. Siangprohb, A. Apiluxc, and O. Chailapakul: Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions. Anal. Chim. Acta 86, 75–83 (2015).

    Article  CAS  Google Scholar 

  18. 18.

    J.Q. Tian, Q. Liu, A.M. Asiri, A.O. Youbi, and X.P. Sun: Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 85, 5595–5599 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    L. Liu and H.W. Lin: Paper-based colorimetric array test strip for selective and semiquantitative multi-ion analysis: Simultaneous detection of Hg2+, Ag+, and Cu2+. Anal. Chem. 86, 8829–8834 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    C.H. Zong, K.L. Ai, G. Zhang, H.W. Li, and L.H. Lu: Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+. Anal. Chem. 83, 3126–3132 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    M. Vedamalai, A.P. Periasamy, C.W. Wang, Y.T. Tseng, L.C. Ho, C.C. Shih, and H.T. Chang: Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 6, 13119–13125 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    M.B. Gholivand and H. Rashidi Nassab: Highly selective adsorptive cathodic stripping voltammetric determination of uranium in the presence of pyromellitic acid. Electroanalysis 17, 719–723 (2005).

    CAS  Article  Google Scholar 

  23. 23.

    A. Struss, P. Pasini, C.M. Ensor, N. Raut, and S. Daunert: Paper strip whole cell biosensors: A portable test for the semiquantitative detection of bacterial quorum signaling molecules. Anal. Chem. 82, 4457–4463 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    H.M. Pei, S.Y. Zhu, M.G. Yang, R.M. Kong, Y.Q. Zheng, and F.L. Qu: Graphene oxide quantum dots@silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens. Bioelectron. 74, 909–914 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    S. Liu, J.Q. Tian, L. Wang, Y.L. Luo, J.F. Zhai, and X.P. Sun: Preparation of photoluminescent carbon nitride dots from CCl4 and 1,2-ethylenediamine: A heat-treatment-based strategy. J. Mater. Chem. 21, 11726–11729 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    W.B. Lu, X.Y. Qin, S. Liu, G.H. Chang, Y.W. Zhang, Y.L. Luo, A.M. Asiri, A.O. Al-Youbi, and X.P. Sun: Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal. Chem. 84, 5351–5357 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    F.L. Qu, M.H. Yang, and A. Rasooly: Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the Alzheimer’s related protease β-secretase. Anal. Chem. 88, 10559–10565 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    R.M. Kong, T. Fu, N.N. Sun, F.L. Qu, S.F. Zhang, and X.B. Zhang: Pyrophosphate-regulated Zn2+-dependent DNAzyme activity: An amplified fluorescence sensing strategy for alkaline phosphatase. Biosens. Bioelectron. 50, 351–355 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    F.L. Qu, H.M. Pei, R.M. Kong, S.Y. Zhu, and L. Xia: Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 165, 136–142 (2016).

    Article  CAS  Google Scholar 

  30. 30.

    Y. Zhao, Y.Q. Zheng, R.M. Kong, L. Xia, and F.L. Qu: Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silicapoly(acrylic acid) brushes for protein biomarker detection. Biosens. Bioelectron. 75, 383–388 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    X. Song, H.Y. Sun, S.W. Yang, S.Z. Zhao, and F. Liao: Synthesis of photoluminescent o-phenylenediamine-m-phenylenediamine copolymer nanospheres: An effective fluorescent sensing platform for selective and sensitive detection of chromium(VI) ion. J. Lumin. 169, 186–190 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    L.L. Li, K.P. Liu, G.H. Yang, C.M. Wang, J.R. Zhang, and J.J. Zhu: Fabrication of graphene–quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Adv. Funct. Mater. 21, 869–878 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    F. Liao, X. Song, S.W. Yang, C.Y. Hu, L. He, S. Yan, and G.Q. Ding: Photoinduced electron transfer of poly(ophenylenediamine)–Rhodamine B copolymer dots: Application in ultrasensitive detection of nitrite in vivo. J. Mater. Chem. A 3, 7568–7574 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    S.W. Yang, C.C. Ye, X. Song, L. He, and F. Liao: Theoretical calculation based synthesis of a poly(p-phenylenediamine)–Fe3O4 composite: A magnetically recyclable photocatalyst with high selectivity for acid dyes. RSC Adv. 4, 54810–54818 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    X.B. Li, S.W. Yang, J. Sun, P. He, X.G. Xu, and G.Q. Ding: Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis. Carbon 78, 38–48 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    X. Song, S.W. Yang, L. He, S. Yan, and F. Liao: Ultra-flyweight hydrophobic poly(m-phenylenediamine) aerogel with microspherical shell structures as a high-performance selective adsorbent for oil contamination. RSC Adv. 4, 49000–49005 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    P. He, J. Sun, S.Y. Tian, S.W. Yang, S.J. Ding, G.Q. Ding, X.M. Xie, and M.H. Jiang: Processable aqueous dispersions of graphene stabilized by graphene quantum dots. Chem. Mater. 27, 218–226 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Y.Q. Dai, H. Long, X.T. Wang, Y.M. Wang, Q. Gu, W. Jiang, Y.C. Wang, C.C. Li, T.Y.H. Zeng, Y.M. Sun, and J. Zeng: Versatile graphene quantum dots with tunable nitrogen doping. Part. Part. Syst. Charact. 31, 597–604 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Z.F. Wang, F. Liao, S.W. Yang, and T.T. Guo: Synthesis of poly(o-phenylenediamine)/ferric oxide composites with rose-like hierarchical microstructures. Mater. Lett. 67, 121–123 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    J. Yano and T. Nagaoka: Ion pairing between dissolved poly(o-phenylenediamine) and halogenide ions. J. Electroanal. Chem. 410, 213–217 (1996).

    Article  Google Scholar 

  41. 41.

    P. Jeroschewski, C. Steuckart, and M. Kuhl: An Amperometric microsensor for the determination of H2S in aquatic environments. Anal. Chem. 68, 4351–4357 (1996).

    CAS  Article  Google Scholar 

  42. 42.

    S.W. Yang and F. Liao: Characterization and morphology control of poly(p-phenylenediamine) microstructures in different Ph. Nano 6, 597–601 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    S.W. Yang and F. Liao: Poly(p-phenylenediamine) nanofibers having conjugated structures, a novel, simple and highly selective fluorescent probe for l-cysteine. Synth. Met. 162, 1343–1347 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    T.T. Zhang, S.W. Yang, J. Sun, X.B. Li, L. He, S. Yan, X.Y. Kang, C.S. Hu, and F. Liao: Poly(p-phenylenediamine) fluorescent nanosphere: A ultra-sensitive fluorescent probe for caffeine. Synth. Met. 181, 86–91 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    F. Liao, S.W. Yang, X.B. Li, L.J. Yang, Z.H. Xie, C.S. Hu, S. Yan, T.Y. Ren, and Z.D. Liu: Preparation of heteroatom doped poly(o-phenylenediamine) fluorescent nanospheres: Tunable fluorescent spectrum and sensing performance. Synth. Met. 189, 126–134 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, and J. Zhu: Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale 5, 4015–4039 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    R. Gokhale and P. Singh: Blue luminescent graphene quantum dots by photochemical stitching of small aromatic molecules: Fluorescent nanoprobes in cellular imaging. Part. Part. Syst. Charact. 31, 433–438 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    S.W. Yang, D. Liu, F. Liao, T.T. Guo, Z.P. Wu, and T.T. Zhang: Synthesis, characterization, morphology control of poly (p-phenylenediamine)-Fe3O4 magnetic micro-composite and their application for the removal of Cr2O72− from water. Synth. Met. 162, 2329–2336 (2012).

    CAS  Article  Google Scholar 

  49. 49.

    Y. Li, Y. Hu, Y. Zhao, G.Q. Shi, L.E. Deng, Y.B. Hou, and L.T. Qu: An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776–780 (2011).

    Article  CAS  Google Scholar 

  50. 50.

    F. Liao, S.W. Yang, X.B. Li, L.J. Yang, Z.H. Xie, C.S. Hu, L. He, X.Y. Kang, X. Song, and T.Y. Ren: Poly(o-phenylenediamine) and benzeneselenol copolymer fluorescent nanorod: An ultra-sensitive fluorescent probe and a fluorescent switch triggered by redox procedure. Synth. Met. 189, 135–142 (2014).

    CAS  Article  Google Scholar 

  51. 51.

    X.J. Mao, H.Z. Zheng, Y.J. Long, J. Du, J.Y. Hao, L.L. Wang, and D.B. Zhou: Study on the fluorescence characteristics of carbon dots. Spectrochim. Acta, Part A 75, 553–557 (2010).

    Article  CAS  Google Scholar 

  52. 52.

    P. Anilkumar, X. Wang, L. Cao, S. Sahu, J.H. Liu, P. Wang, K. Korch, K.N. Tackett, A. Parenzana, and Y.P. Sun: Toward quantitatively fluorescent carbon-based “quantum” dots. Nanoscale 3, 2023–2027 (2011).

    CAS  Article  Google Scholar 

  53. 53.

    S.W. Yang, S.Q. Huang, D. Liu, and F. Liao: Characterization and morphology control of poly(p-phenylenediamine) nanofibers: A novel, simple and highly selective fluorescent probe for thiols. Synth. Met. 162, 2228–2235 (2012).

    CAS  Article  Google Scholar 

  54. 54.

    Y. Zhao, X.B. Zhang, Z.X. Han, L. Qiao, C.Y. Li, L.X. Jian, G.L. Shen, and R.Q. Yu: Highly sensitive and selective colorimetric and off−on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Anal. Chem. 81, 7022–7030 (2009).

    CAS  Article  Google Scholar 

  55. 55.

    M. Rahman and H.J. Harmon: Absorbance change and static quenching of fluorescence of meso-tetra(4-sulfonatophenyl)porphyrin (TPPS) by trinitrotoluene (TNT). Spectrochim. Acta, Part A 65, 901–906 (2006).

    Article  CAS  Google Scholar 

  56. 56.

    H. Zhang, Y. Sun, K. Ye, P. Zhang, and Y. Wang: Oxygen sensing materials based on mesoporous silica MCM-41 and Pt(II)–porphyrin complexes. J. Mater. Chem. 15, 3181–3186 (2005).

    CAS  Article  Google Scholar 

  57. 57.

    P.P.H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, and R.W. Murray: Dynamic and static quenching of fluorescence by 1−4 nm diameter gold monolayer-protected clusters. J. Phys. Chem. B 110, 4637–4644 (2006).

    CAS  Article  Google Scholar 

  58. 58.

    S.J. Zhu, J.H. Zhang, S.J. Tang, C.Y. Qiao, L. Wang, H.Y. Wang, X. Liu, B. Li, Y.F. Li, W.L. Yu, X.F. Wang, H.C. Sun, and B. Yang: Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 22, 4732–4740 (2012).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Shizhen Zhao and Siwei Yang contributed equally to this work. We are grateful to the open project fund of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province (CSPC2016-1), National Science and Technology Major Project (2011ZX02707), and the Chinese Academy of Sciences (KGZDEW-303) for generous support of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fang Liao.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Yang, S., Song, X. et al. Portable solid rapid quantitative detection for Cu2+ ions: Tuning the detection range limits of fluorescent conducting polymer dots. Journal of Materials Research 32, 1582–1593 (2017). https://doi.org/10.1557/jmr.2017.90

Download citation