Abstract
In this work, o-phenylenediamine-m-phenylenediamine copolymer dots (omCPs) with designed surface groups are synthesized and characterized. Here, we explored a simple, rapid semiquantitative detection system for Cu2+ with a wide detection range (5–7 orders of magnitude) based on the fluorescence in the solid state of omCPs and their tunable detection limits. The construction and application of the rapid semiquantitative detection system for Cu2+ are developed and demonstrated for the practical applications. What’s more, the detection limit can be modulated easily by adjusting the surface groups of these dots through the monomer dose control before the co-polymerization. Moreover, we demonstrated that this new technological approach is suitable for the semiquantitative determination of other ions pollutants (i.e., Na+, K+, Cu2+, Pb2+, Hg2+, and NO2−) in environmental water.
This is a preview of subscription content, access via your institution.







References
- 1.
R.M. Manez and F. Sancenon: Fluorgenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476 (2003).
- 2.
S. Liu, J.Q. Tian, L. Wang, Y.W. Zhang, X.Y. Qin, Y.L. Luo, A.M. Asiri, A.O. AlYoubi, and X.P. Sun: Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 24, 2037–2041 (2012).
- 3.
L.D. Chebrolua, S. Thurakkala, and H.S. Balaramana: Selective and dual naked eye detection of Cu2+ and Hg2+ ions using a simple quinoline–carbaldehyde chemosensor. Sens. Actuators, B 204, 480–488 (2014).
- 4.
R.R. Avirah, K. Jyothish, and D. Ramaiah: Dual-mode semisquaraine-based sensor for selective detection of Hg2+ in a micellar medium. Org. Lett. 9, 121–124 (2006).
- 5.
X.Q. Chen, Y. Zhou, X.J. Peng, and J.Y. Yoon: Fluorescent and colorimetric probes for detection of thiols. Chem. Soc. Rev. 39, 2120–2135 (2010).
- 6.
T.E. Wood and A. Thompson: Advances in the chemistry of dipyrrins and their complexes. Chem. Rev. 107, 1831–1861 (2007).
- 7.
G. Ulrich, R. Ziessel, and A. Harriman: The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angew. Chem., Int. Ed. 47, 1184–1201 (2008).
- 8.
J. Sun, S. Yang, Z. Wang, H. Shen, T. Xu, L. Sun, H. Li, W. Chen, X. Jiang, G. Ding, Z. Kang, X. Xie, and M. Jiang: Ultra-high quantum yield of graphene quantum dots: Aromatic-nitrogen doping and photoluminescence mechanism. Part. Part. Syst. Charact. 32, 434–440 (2015).
- 9.
M. Taki, S. Iyoshi, A. Ojida, I. Hamachi, and Y. Yamamoto: Development of highly sensitive fluorescent probes for detection of intracellular copper(I) in living systems. J. Am. Chem. Soc. 132, 5938–5939 (2010).
- 10.
C.S. Wu, M.K.K. Oo, and X.D. Fan: Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano 4, 5897–5904 (2010).
- 11.
P. Yang, Y. Zhao, Y. Lu, Q.Z. Xu, X.W. Xu, L. Dong, and S.H. Yu: Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: A fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions. ACS Nano 5, 2147–2154 (2011).
- 12.
X.Q. Wang, G. Ye, and X.G. Wang: Hydrogel diffraction gratings functionalized with crown ether for heavy metal ion detection. Sens. Actuators, B 193, 413–419 (2014).
- 13.
H.J. Sun, N. Gao, L. Wu, J.S. Ren, W.L. Wei, and X.G. Qu: Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. Chem.–Eur. J. 19, 13362–13368 (2013).
- 14.
X. Yang and E.K. Wang: A nanoparticle autocatalytic sensor for Ag+ and Cu2+ ions in aqueous solution with high sensitivity and selectivity and its application in test paper. Anal. Chem. 83, 5005–5011 (2011).
- 15.
G.H. Chen, W.Y. Chen, Y.C. Yen, C.W. Wang, H.T. Chang, and C.F. Chen: Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 86, 6843–6849 (2014).
- 16.
M. Wang, X.M. Liu, H.Z. Lu, H.M. Wang, and Z.H. Qin: Highly selective and reversible chemosensor for Pd2+ detected by fluorescence, colorimetry, and test paper. ACS Appl. Mater. Interfaces 7, 1284–1289 (2015).
- 17.
S. Chaiyoa, W. Siangprohb, A. Apiluxc, and O. Chailapakul: Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions. Anal. Chim. Acta 86, 75–83 (2015).
- 18.
J.Q. Tian, Q. Liu, A.M. Asiri, A.O. Youbi, and X.P. Sun: Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 85, 5595–5599 (2013).
- 19.
L. Liu and H.W. Lin: Paper-based colorimetric array test strip for selective and semiquantitative multi-ion analysis: Simultaneous detection of Hg2+, Ag+, and Cu2+. Anal. Chem. 86, 8829–8834 (2014).
- 20.
C.H. Zong, K.L. Ai, G. Zhang, H.W. Li, and L.H. Lu: Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+. Anal. Chem. 83, 3126–3132 (2011).
- 21.
M. Vedamalai, A.P. Periasamy, C.W. Wang, Y.T. Tseng, L.C. Ho, C.C. Shih, and H.T. Chang: Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 6, 13119–13125 (2014).
- 22.
M.B. Gholivand and H. Rashidi Nassab: Highly selective adsorptive cathodic stripping voltammetric determination of uranium in the presence of pyromellitic acid. Electroanalysis 17, 719–723 (2005).
- 23.
A. Struss, P. Pasini, C.M. Ensor, N. Raut, and S. Daunert: Paper strip whole cell biosensors: A portable test for the semiquantitative detection of bacterial quorum signaling molecules. Anal. Chem. 82, 4457–4463 (2010).
- 24.
H.M. Pei, S.Y. Zhu, M.G. Yang, R.M. Kong, Y.Q. Zheng, and F.L. Qu: Graphene oxide quantum dots@silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens. Bioelectron. 74, 909–914 (2015).
- 25.
S. Liu, J.Q. Tian, L. Wang, Y.L. Luo, J.F. Zhai, and X.P. Sun: Preparation of photoluminescent carbon nitride dots from CCl4 and 1,2-ethylenediamine: A heat-treatment-based strategy. J. Mater. Chem. 21, 11726–11729 (2011).
- 26.
W.B. Lu, X.Y. Qin, S. Liu, G.H. Chang, Y.W. Zhang, Y.L. Luo, A.M. Asiri, A.O. Al-Youbi, and X.P. Sun: Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal. Chem. 84, 5351–5357 (2012).
- 27.
F.L. Qu, M.H. Yang, and A. Rasooly: Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the Alzheimer’s related protease β-secretase. Anal. Chem. 88, 10559–10565 (2016).
- 28.
R.M. Kong, T. Fu, N.N. Sun, F.L. Qu, S.F. Zhang, and X.B. Zhang: Pyrophosphate-regulated Zn2+-dependent DNAzyme activity: An amplified fluorescence sensing strategy for alkaline phosphatase. Biosens. Bioelectron. 50, 351–355 (2013).
- 29.
F.L. Qu, H.M. Pei, R.M. Kong, S.Y. Zhu, and L. Xia: Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 165, 136–142 (2016).
- 30.
Y. Zhao, Y.Q. Zheng, R.M. Kong, L. Xia, and F.L. Qu: Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silicapoly(acrylic acid) brushes for protein biomarker detection. Biosens. Bioelectron. 75, 383–388 (2016).
- 31.
X. Song, H.Y. Sun, S.W. Yang, S.Z. Zhao, and F. Liao: Synthesis of photoluminescent o-phenylenediamine-m-phenylenediamine copolymer nanospheres: An effective fluorescent sensing platform for selective and sensitive detection of chromium(VI) ion. J. Lumin. 169, 186–190 (2016).
- 32.
L.L. Li, K.P. Liu, G.H. Yang, C.M. Wang, J.R. Zhang, and J.J. Zhu: Fabrication of graphene–quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Adv. Funct. Mater. 21, 869–878 (2011).
- 33.
F. Liao, X. Song, S.W. Yang, C.Y. Hu, L. He, S. Yan, and G.Q. Ding: Photoinduced electron transfer of poly(ophenylenediamine)–Rhodamine B copolymer dots: Application in ultrasensitive detection of nitrite in vivo. J. Mater. Chem. A 3, 7568–7574 (2015).
- 34.
S.W. Yang, C.C. Ye, X. Song, L. He, and F. Liao: Theoretical calculation based synthesis of a poly(p-phenylenediamine)–Fe3O4 composite: A magnetically recyclable photocatalyst with high selectivity for acid dyes. RSC Adv. 4, 54810–54818 (2014).
- 35.
X.B. Li, S.W. Yang, J. Sun, P. He, X.G. Xu, and G.Q. Ding: Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis. Carbon 78, 38–48 (2014).
- 36.
X. Song, S.W. Yang, L. He, S. Yan, and F. Liao: Ultra-flyweight hydrophobic poly(m-phenylenediamine) aerogel with microspherical shell structures as a high-performance selective adsorbent for oil contamination. RSC Adv. 4, 49000–49005 (2014).
- 37.
P. He, J. Sun, S.Y. Tian, S.W. Yang, S.J. Ding, G.Q. Ding, X.M. Xie, and M.H. Jiang: Processable aqueous dispersions of graphene stabilized by graphene quantum dots. Chem. Mater. 27, 218–226 (2015).
- 38.
Y.Q. Dai, H. Long, X.T. Wang, Y.M. Wang, Q. Gu, W. Jiang, Y.C. Wang, C.C. Li, T.Y.H. Zeng, Y.M. Sun, and J. Zeng: Versatile graphene quantum dots with tunable nitrogen doping. Part. Part. Syst. Charact. 31, 597–604 (2014).
- 39.
Z.F. Wang, F. Liao, S.W. Yang, and T.T. Guo: Synthesis of poly(o-phenylenediamine)/ferric oxide composites with rose-like hierarchical microstructures. Mater. Lett. 67, 121–123 (2012).
- 40.
J. Yano and T. Nagaoka: Ion pairing between dissolved poly(o-phenylenediamine) and halogenide ions. J. Electroanal. Chem. 410, 213–217 (1996).
- 41.
P. Jeroschewski, C. Steuckart, and M. Kuhl: An Amperometric microsensor for the determination of H2S in aquatic environments. Anal. Chem. 68, 4351–4357 (1996).
- 42.
S.W. Yang and F. Liao: Characterization and morphology control of poly(p-phenylenediamine) microstructures in different Ph. Nano 6, 597–601 (2011).
- 43.
S.W. Yang and F. Liao: Poly(p-phenylenediamine) nanofibers having conjugated structures, a novel, simple and highly selective fluorescent probe for l-cysteine. Synth. Met. 162, 1343–1347 (2012).
- 44.
T.T. Zhang, S.W. Yang, J. Sun, X.B. Li, L. He, S. Yan, X.Y. Kang, C.S. Hu, and F. Liao: Poly(p-phenylenediamine) fluorescent nanosphere: A ultra-sensitive fluorescent probe for caffeine. Synth. Met. 181, 86–91 (2013).
- 45.
F. Liao, S.W. Yang, X.B. Li, L.J. Yang, Z.H. Xie, C.S. Hu, S. Yan, T.Y. Ren, and Z.D. Liu: Preparation of heteroatom doped poly(o-phenylenediamine) fluorescent nanospheres: Tunable fluorescent spectrum and sensing performance. Synth. Met. 189, 126–134 (2014).
- 46.
L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, and J. Zhu: Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale 5, 4015–4039 (2013).
- 47.
R. Gokhale and P. Singh: Blue luminescent graphene quantum dots by photochemical stitching of small aromatic molecules: Fluorescent nanoprobes in cellular imaging. Part. Part. Syst. Charact. 31, 433–438 (2014).
- 48.
S.W. Yang, D. Liu, F. Liao, T.T. Guo, Z.P. Wu, and T.T. Zhang: Synthesis, characterization, morphology control of poly (p-phenylenediamine)-Fe3O4 magnetic micro-composite and their application for the removal of Cr2O72− from water. Synth. Met. 162, 2329–2336 (2012).
- 49.
Y. Li, Y. Hu, Y. Zhao, G.Q. Shi, L.E. Deng, Y.B. Hou, and L.T. Qu: An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776–780 (2011).
- 50.
F. Liao, S.W. Yang, X.B. Li, L.J. Yang, Z.H. Xie, C.S. Hu, L. He, X.Y. Kang, X. Song, and T.Y. Ren: Poly(o-phenylenediamine) and benzeneselenol copolymer fluorescent nanorod: An ultra-sensitive fluorescent probe and a fluorescent switch triggered by redox procedure. Synth. Met. 189, 135–142 (2014).
- 51.
X.J. Mao, H.Z. Zheng, Y.J. Long, J. Du, J.Y. Hao, L.L. Wang, and D.B. Zhou: Study on the fluorescence characteristics of carbon dots. Spectrochim. Acta, Part A 75, 553–557 (2010).
- 52.
P. Anilkumar, X. Wang, L. Cao, S. Sahu, J.H. Liu, P. Wang, K. Korch, K.N. Tackett, A. Parenzana, and Y.P. Sun: Toward quantitatively fluorescent carbon-based “quantum” dots. Nanoscale 3, 2023–2027 (2011).
- 53.
S.W. Yang, S.Q. Huang, D. Liu, and F. Liao: Characterization and morphology control of poly(p-phenylenediamine) nanofibers: A novel, simple and highly selective fluorescent probe for thiols. Synth. Met. 162, 2228–2235 (2012).
- 54.
Y. Zhao, X.B. Zhang, Z.X. Han, L. Qiao, C.Y. Li, L.X. Jian, G.L. Shen, and R.Q. Yu: Highly sensitive and selective colorimetric and off−on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Anal. Chem. 81, 7022–7030 (2009).
- 55.
M. Rahman and H.J. Harmon: Absorbance change and static quenching of fluorescence of meso-tetra(4-sulfonatophenyl)porphyrin (TPPS) by trinitrotoluene (TNT). Spectrochim. Acta, Part A 65, 901–906 (2006).
- 56.
H. Zhang, Y. Sun, K. Ye, P. Zhang, and Y. Wang: Oxygen sensing materials based on mesoporous silica MCM-41 and Pt(II)–porphyrin complexes. J. Mater. Chem. 15, 3181–3186 (2005).
- 57.
P.P.H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, and R.W. Murray: Dynamic and static quenching of fluorescence by 1−4 nm diameter gold monolayer-protected clusters. J. Phys. Chem. B 110, 4637–4644 (2006).
- 58.
S.J. Zhu, J.H. Zhang, S.J. Tang, C.Y. Qiao, L. Wang, H.Y. Wang, X. Liu, B. Li, Y.F. Li, W.L. Yu, X.F. Wang, H.C. Sun, and B. Yang: Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 22, 4732–4740 (2012).
ACKNOWLEDGMENTS
Shizhen Zhao and Siwei Yang contributed equally to this work. We are grateful to the open project fund of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province (CSPC2016-1), National Science and Technology Major Project (2011ZX02707), and the Chinese Academy of Sciences (KGZDEW-303) for generous support of this work.
Author information
Affiliations
Corresponding author
Supplementary Material
Rights and permissions
About this article
Cite this article
Zhao, S., Yang, S., Song, X. et al. Portable solid rapid quantitative detection for Cu2+ ions: Tuning the detection range limits of fluorescent conducting polymer dots. Journal of Materials Research 32, 1582–1593 (2017). https://doi.org/10.1557/jmr.2017.90
Received:
Accepted:
Published:
Issue Date: