Abstract
Metal working tools are generally exposed to hard conditions, and the control of their excessive wear is of a crucial importance for the metal working process. Indeed, tribo-layers as mechanically mixed layers and wear debris are completely involved in the wear behavior. This paper undertakes the study of the frictional behavior and wear of X40CrMoV5 (AISI H13) tool steel as a function of speed rotation at room temperature. The utmost objective of this research work is to assess some wear mechanisms of this tool steel used at room temperature. The tribological experiments were accomplished on high temperature pin-on-disc tribometer with an open sliding contact. The pin material was X40CrMoV5 steel and the disc material was Fe360B steel. The investigations were accomplished for different rotatory speeds of the disc ranging from 25 rpm to 100 rpm, and different nominal pressure. SEM and EDS explored the development surface damage and oxides tribo-layers. It was concluded that the increase of the rotation speed of the disc and the nominal pressure reduce the friction coefficient by the creation of a wear protective layer.
This is a preview of subscription content, access via your institution.









References
- 1.
P. Munoz-Escalona, N. Dıaz, and Z. Cassier: Prediction of tool wear mechanisms in face milling AISI, 1045 steel. J. Mater. Eng. Perform. 21, 797–808 (2012).
- 2.
J. Jiang, F.H. Stott, and M.M. Stack: The role of triboparticulates in dry sliding wear. Tribol. Int. 31, 245–256 (1998).
- 3.
P.J. Blau: Friction and Wear Transition of Materials (Noyes Publications, Park Ridge, NJ, 1989); pp. 271–351.
- 4.
Ch. Colombie, Y. Berthier, A. Floquet, L. Vincent, and M. Godet: Fretting: Load carrying capacity of wear debris. Trans. ASME F106, 194–201 (1984).
- 5.
S.Q. Wang, M.X. Wei, F. Wang, and Y.T. Zhao: Transition of elevated-temperature wear mechanisms and the oxidative delamination wear in hot-working die steels. Tribol. Int. 43, 577–584 (2010).
- 6.
Y.Z. Zhan and G. Zhang: Mechanical mixing and wear-debris formation in the dry sliding wear of copper matrix composite. Tribol. Lett. 17, 581–592 (2004).
- 7.
J. Li, M. Elmadagli, V.Y. Gertsman, V. Lo, and A.T. Alpas: FIB and TEM characterization of subsurfaces of an Al–Si alloy (A390) subjected to sliding wear. Mater. Sci. Eng., A 421, 317–327 (2006).
- 8.
M. Ruiz-Andres, A. Conde, J. de Damborenea, and I. Garcia: Friction and wear behavior of dual phase steels in discontinuous sliding contact conditions as a function of sliding speed and contact frequency. Tribol Int. 90, 32–42 (2015).
- 9.
H. So, D.S. Yu, and C.Y. Chuang: Formation and wear mechanism of tribo-oxides and the regime of oxidational wear of steel. Wear 253, 1004–1015 (2002).
- 10.
M.X. Wei, K.M. Chen, S.Q. Wang, and X.H. Cui: Analysis for wear behavior of oxidative wear. Tribol Lett. 42, 1–7 (2011).
- 11.
S.Q. Wang, M.X. Wei, F. Wang, X.H. Cui, and C. Dong: Transition of mild wear to severe wear in oxidative wear of H21 steel. Tribol Lett. 32, 67–72 (2008).
- 12.
A. Iwabuchi: The role of oxide particles in the fretting wear of mild steel. Wear 151, 301–311 (1991).
- 13.
A. Iwabuchi, H. Kubosawa, and H. Hori: The dependence of the transitions severe to mold wear on load and surface roughness when the oxide particles supplied before sliding. Wear 139, 319–333 (1990).
- 14.
Y. Berthier, M. Godet, and M. Brendle: Velocity accomodation in friction. Tribol. Trans. 32 (4), 490–496 (1989).
- 15.
D.J. Barnes, J.E. Wilson, F.H. Stott, and G.C. Wood: The influence of oxide films on the friction and wear of Fe–5% Cr alloy in controlled environments. Wear 45, 161–176 (1977).
- 16.
F.H. Stott and G.C. Wood: The influence of oxides on the friction and wear of alloys. Tribol. Int. 11, 211–218 (1978).
- 17.
T.S. Eyre and D. Maynard: Surface aspects of unlubricated metal–metal wear. Wear 18, 301 (1971).
- 18.
F.H. Stott, J. Glascott, and G.C. Wood: The sliding wear of commercial Fe–12-percent Cr alloys at high temperature. Wear 101, 311–324 (1985).
- 19.
R. Merz, A. Brodyanski, and M. Kopnarski: On the role of oxidation in tribological contacts under environmental conditions conference. Presented at the European Symposium on Friction, Wear, and Wear Protection, Germany, 2014.
- 20.
V. Panin, A. Kolubiev, S. Tarasov, and V. Popov: Subsurface layer formation during sliding friction. Wear 249, 860–867 (2002).
- 21.
S.C. Lim, M.F. Ashby, and J.H. Brunton: Wear-rate transitions and their relationship to wear mechanisms. Acta Metall. 35, 1343–1348 (1987).
- 22.
R. Mnif, Z. Baccouch, R. Elleuch, and C. Richard: Investigations of high temperature wear mechanisms for tool steel under open-sliding contact. J. Mater. Eng. Perform. 23 (8), 2864–2870 (2014).
- 23.
M. Marzouki, C. Kowandy, and C. Richard: Experimental simulation of tool/product interface during hot drawing. Wear 262, 235–241 (2007).
- 24.
Z. Baccouch, R. Mnif, R. Elleuch, and C. Richard: Analysis of friction, wear and oxidation behaviour of X40CrMoV5/Fe360B steel couple in an open-sliding contact. Proc. Inst. Mech. Eng., Part J 228, 276–287 (2014).
- 25.
M. Marzouki: Tribométrie à haute température: Conception et réalisation d’un banc d’essai à chaud—Application à l’étude d’un acier revêtu (Usibor 1500P) pour emboutissage à chaud [Tribometer at high temperature: Design and realzation of a test bench: application for a study of a coated steel (Usibor 1500P) for hot stamping.]. Thesis de Doctorat, University de Technology of Compiègne, 2005.
- 26.
T. Savaskan and Y. Alemdag: Effects of pressure and sliding speed on the friction and wear properties of Al–40Zn–3Cu–2Si alloy: A comparative study with SAE 65 bronze. Mater. Sci. Eng. 496, 517–523 (2008).
- 27.
J.L. He, Y.H. Lin, and K.C. Chen: Wear performance of CAP-titanium nitride-coated high-speed steel in different dry sliding conditions. Wear 208, 36–41 (1997).
- 28.
O. Barrau, C. Boher, R. Gras, and F. Rezaï-Aria: Analysis of the friction and wear behaviour of hot work tool steel for forging. Wear 255, 1444–1454 (2013).
- 29.
G. Straffelini and A. Molinari: Dry sliding wear of Ti–6Al–4V alloy as influenced by the counterface and sliding condition. Wear 236, 328–338 (1999).
- 30.
A. Pauschitz: Mechanisms of sliding wear of metals and alloys at elevated temperature. Tribol. Int. 41, 584–602 (2008).
ACKNOWLEDGMENTS
The authors would like to acknowledge the help of SOPAL Society (Tunisia), especially its head manager for his precious aid and contribution to this research.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baccouch, Z., Mnif, R., Elleuch, R. et al. The effect of tribolayers on the behavior friction of X40CrMoV5/Fe360B steel couple in an open sliding contact. Journal of Materials Research 32, 2594–2600 (2017). https://doi.org/10.1557/jmr.2017.81
Received:
Accepted:
Published:
Issue Date: