Skip to main content
Log in

Determination of the strain-rate sensitivity of ultrafine-grained materials by spherical nanoindentation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2017

This article has been updated

Abstract

The strain-rate sensitivity of the flow stress represents a crucial parameter for characterizing the deformation kinetics of a material. In this work a new method was developed and validated for determining the local strain-rate sensitivity of the flow stress at different plastic strains. The approach is based on spherical nanoindentation strain-rate jump tests during one deformation experiment. In the case of ultrafine-grained Al and ultrafine-grained Cu good agreement between this technique and macroscopic compression tests has been achieved. In contrast to this, individual spherical nanoindentation experiments at constant strain-rates resulted in unrealistically high strain-rate sensitivities for both materials because of drift influences. Microstructural investigations of the residual spherical imprints on ultrafine-grained Al and ultrafine-grained Cu revealed significant differences regarding the deformation structure. For ultrafine-grained Cu considerably less activity of grain boundary sliding has been observed compared to ultrafine-grained Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

Change history

References

  1. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5–8 (2002).

    Article  CAS  Google Scholar 

  2. Z. Horita, K. Ohashi, T. Fujita, K. Kaneko, and T.G. Langdon: Achieving high strength and high ductility in precipitation-hardened alloys. Adv. Mater. 17, 1599–1602 (2005).

    Article  CAS  Google Scholar 

  3. H.W. Höppel, J. May, and M. Göken: Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding. Adv. Eng. Mater. 6, 781–784 (2004).

    Article  Google Scholar 

  4. J. Chen, L. Lu, and K. Lu: Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54, 1913–1918 (2006).

    Article  CAS  Google Scholar 

  5. J. May, H.W. Höppel, and M. Göken: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr. Mater. 53, 189–194 (2005).

    Article  CAS  Google Scholar 

  6. A. Mishra, M. Martin, N.N. Thadhani, B.K. Kad, E.A. Kenik, and M.A. Meyers: High-strain-rate response of ultra-fine-grained copper. Acta Mater. 56, 2770–2783 (2008).

    Article  CAS  Google Scholar 

  7. V. Maier, K. Durst, J. Mueller, B. Backes, H. Höppel, and M. Göken: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421–1430 (2011).

    Article  CAS  Google Scholar 

  8. S. Pathak, D. Stojakovic, and S.R. Kalidindi: Measurement of the local mechanical properties in polycrystalline samples using spherical nanoindentation and orientation imaging microscopy. Acta Mater. 57, 3020–3028 (2009).

    Article  CAS  Google Scholar 

  9. S. Pathak, J. Michler, K. Wasmer, and S.R. Kalidindi: Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. J. Mater. Sci. 47, 815–823 (2012).

    Article  CAS  Google Scholar 

  10. J.G. Swadener, E.P. George, and G.M. Pharr: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681–694 (2002).

    Article  Google Scholar 

  11. R. Sánchez-Martín, C. Zambaldi, M.T. Pérez-Prado, and J.M. Molina-Aldareguia: High temperature deformation mechanisms in pure magnesium studied by nanoindentation. Scr. Mater. 104, 9–12 (2015).

    Article  Google Scholar 

  12. S.R. Kalidindi and S. Pathak: Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Mater. 56, 3523–3532 (2008).

    Article  CAS  Google Scholar 

  13. H. Hertz: Über die Berührung fester elastischer Körper [The contact of solid elastic bodies]. J. Für Die Reine Und Angew. Math. 1882, 156–171 (1882).

    Article  Google Scholar 

  14. D. Tabor: The Hardness of Metals (Oxford University Press, London, 1951).

    Google Scholar 

  15. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Mater. 47, 579–583 (1999).

    Article  CAS  Google Scholar 

  16. J.B. Pethica and W.C. Oliver: Mechanical properties of nanometer volumes of material: Use of the elastic response of small area indentations. Mater. Res. Soc. Symp. Proc. 130, 13–23 (1989).

    Article  CAS  Google Scholar 

  17. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, and J.L. Hay: On the measurement of stress–strain curves by spherical indentation. Thin Solid Films 398–399, 331–335 (2001).

    Article  Google Scholar 

  18. T.F. Juliano, M.R. Vanlandingham, T. Weerasooriya, and P. Moy: Extracting stress–strain and compressive yield stress information from spherical indentation (Army Research Lab Final Report, Defense Technical Information Center, Fort Belvoir, 2007).

    Google Scholar 

  19. S. Basu, A. Moseson, and M.W. Barsoum: On the determination of spherical nanoindentation stress–strain curves. J. Mater. Res. 21, 2628–2637 (2006).

    Article  CAS  Google Scholar 

  20. R.K. Chintapalli, E. Jimenez-Pique, F.G. Marro, H. Yan, M. Reece, and M. Anglada: Spherical instrumented indentation of porous nanocrystalline zirconia. J. Eur. Ceram. Soc. 32, 123–132 (2012).

    Article  CAS  Google Scholar 

  21. Y.J. Park and G.M. Pharr: Nanoindentation with spherical indenters: Finite element studies of deformation in the elastic-plastic transition regime. Thin Solid Films 447–448, 246–250 (2004).

    Article  Google Scholar 

  22. Y. Liu, J. Hay, H. Wang, and X. Zhang: A new method for reliable determination of strain-rate sensitivity of low-dimensional metallic materials by using nanoindentation. Scr. Mater. 77, 5–8 (2014).

    Article  CAS  Google Scholar 

  23. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals. Mater. Sci. Eng., A 381, 71–79 (2004).

    Article  Google Scholar 

  24. V. Maier, B. Merle, M. Göken, and K. Durst: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J. Mater. Res. 28, 1177–1188 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the funding of the German Research Council (DFG) which, within the framework of its “Excellence Initiative”, supports the cluster of excellence “Engineering of Advanced Materials” at the University of Erlangen-Nuremberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Feldner.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldner, P., Merle, B. & Göken, M. Determination of the strain-rate sensitivity of ultrafine-grained materials by spherical nanoindentation. Journal of Materials Research 32, 1466–1473 (2017). https://doi.org/10.1557/jmr.2017.69

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.69

Navigation