Effect of metallurgical factors on the pitting corrosion behavior of super austenitic stainless steel weld in an acidic chloride environment

Abstract

This study examined the effects of a variety of metallurgical factors on the electrochemical corrosion behavior of superaustenitic stainless steel welds. First, the effects of the sigma (σ)-phase on the corrosion behavior were studied by means of a three-dimensional-atom probe. Cr and Mo depletion areas formed around the σ-phases which are precipitated in the interdendritic area were clearly observed. Second, the effects of oxide inclusion on the pitting corrosion of the steel welds were analyzed. The utilization of high resolution transmission electron microscope clearly demonstrated that the thickness and Cr content of the passive film formed on the steel surface decreased significantly with decreasing distance to the oxide inclusion, resulting in a deterioration of the corrosion resistance. Third, the effects of alloying elements, Cu and Al, were evaluated using an electrochemical polarization technique. This confirmed that Cu has a detrimental effect on the resistance to localized corrosion of the steel. The addition of Al up to 0.25 wt% had no significant effects on corrosion resistance in a chloride environment despite the presence of an Al-based oxide layer (Al2O3) on the outermost surface.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    S.T. Kim, S.Y. Kim, I.S. Lee, Y.S. Park, M.C. Shin, and Y.S. Kim: Effects of shielding gases on the microstructure and localized corrosion of tube-to-tube sheet welds of super austenitic stainless steel for seawater cooled condenser. Corros. Sci. 53, 2611 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    G. Mori and D. Bauernfeind: Pitting and crevice corrosion of superaustenitic stainless steels. Mater. Corros. 55, 164 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    T.G. Gooch: Corrosion behavior of welded stainless steel. Weld. J. 75, 135s (1996).

    Google Scholar 

  4. 4.

    ASM International: Corrosion of Weldments (ASM International, Materials Park, 2006).

    Google Scholar 

  5. 5.

    S.W. Banovic, J.N. Dupoint, and A.R. Marder: Dilution and microsegregation in dissimilar metal welds between super austenitic stainless steel and nickel base alloys. Sci. Technol. Weld. Joining 7, 374 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    S.K. Nam, S.J. Park, H.S. Na, and C.Y. Kang: Effect of welding thermal cycle on microstructure and pitting corrosion property of multi-pass weldment of super duplex stainless steel. J. Weld. Joining 28, 18 (2010).

    Article  Google Scholar 

  7. 7.

    P. Paulraj and R. Garg: Effect of intermetallic phases on corrosion behavior and mechanical properties of duplex stainless steel and super-duplex stainless steel. Adv. Sci. Technol. Res. J. 9, 87 (2015).

    Article  Google Scholar 

  8. 8.

    S.H. Jang, S.T. Kim, I.S. Lee, and Y.S. Park: Effect of shielding gas composition on phase transformation and mechanism of pitting corrosion of hyper duplex stainless steel welds. Mater. Trans. 52, 1228 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    P. Marcus and I. Olefjord: A round robin on combined electrochemical and AES/ESCA characterization of the passive films on Fe Cr and Fe Cr Mo alloys. Corros. Sci. 28, 589 (1998).

    Article  Google Scholar 

  10. 10.

    R. Qvarfort: Some observations regarding the influence of molybdenum on the pitting corrosion resistance of stainless steels. Corros. Sci. 40, 215 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    J.O. Nilsson and A. Wilson: Influence of isothermal phase transformations on toughness and pitting corrosion of super duplex stainless steel SAF 2507. Mater. Sci. Technol. 9, 545 (1993).

    CAS  Article  Google Scholar 

  12. 12.

    M.E. Wilms, V.J. Gadgil, J.M. Krougman, and F.P. Ijsseling: The effect of σ-phase precipitation at 800 °C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel. Corros. Sci. 36, 871 (1994).

    CAS  Article  Google Scholar 

  13. 13.

    K. Ravindranath and S.N. Malhotra: The influence of aging on the intergranular corrosion of 22 chromium-5 nickel duplex stainless steel. Corros. Sci. 37, 121 (1995).

    CAS  Article  Google Scholar 

  14. 14.

    K. Ravindranath and S.N. Malhotra: Influence of aging on intergranular corrosion of a 25% chromium-5% nickel duplex stainless steel. Corrosion 50, 318 (1994).

    CAS  Article  Google Scholar 

  15. 15.

    G.S. Frankel: Pitting corrosion of metals. J. Electrochem. Soc. 145, 2186 (1998).

    CAS  Article  Google Scholar 

  16. 16.

    H.Y. Ha, C.J. Park, and H.S. Kwon: Effect of non-metallic inclusions on the initiation of pitting corrosion in 11% Cr ferritic stainless steel examined by micro-droplet cell. Corros. Sci. 49, 1266 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    G. Eklund: Initiation of pitting at sulfide inclusions in stainless steel. J. Electrochem. Soc. 121, 467 (1974).

    CAS  Article  Google Scholar 

  18. 18.

    G. Wranglen: Pitting and sulphide inclusions in steel. Corros. Sci. 14, 331 (1974).

    Article  Google Scholar 

  19. 19.

    E.G. Webb, T. Suter, and R.C. Alkire: Microelectrochemical measurements of the dissolution of single MnS inclusions, and the prediction of the critical conditions for pit initiation on stainless steel. J. Electrochem. Soc. 148(5), B186 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    D.E. Williams and Y.Y. Zhu: Explanation for initiation of pitting corrosion of stainless steels at sulfide inclusions. J. Electrochem. Soc. 147(5), 1763 (2000).

    CAS  Article  Google Scholar 

  21. 21.

    Z. Szklarska-Smialowska: Influence of sulfide inclusions on the pitting corrosion of Steels. Corrosion 28, 388 (1972).

    CAS  Article  Google Scholar 

  22. 22.

    A. Yamamoto, T. Ashiura, and E. Kamisaka: Mechanism of improvement on corrosion resistance by copper addition to ferritic stainless steels. Boshoku Gijutsu 35, 448 (1986).

    CAS  Google Scholar 

  23. 23.

    S.T. Kim and Y.S. Park: Effect of copper addition on corrosion behavior of high performance austenitic stainless steel in highly concentrated sulfuric acid solution. Corrosion 63, 114 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    S.H. Jeon, S.T. Kim, I.S. Lee, J.H. Park, K.T. Kim, J.S. Kim, and Y.S. Park: Effects of copper addition on the formation of inclusions and the resistance to pitting corrosion of high performance duplex stainless steels. Corros. Sci. 53, 1408 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    A. Pardo, M.C. Merino, M. Carboneras, A.E. Coy, and R. Arrabal: Pitting corrosion behavior of austenitic stainless steels with Cu and Sn additions. Corros. Sci. 49, 510 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    M. Gurram, K. Adepu, R.R. Pinninti, and M.R. Gankidi: Effect of copper and aluminium addition on mechanical properties and corrosion behavior of AISI 430 ferritic stainless steel gas tungsten arc welds. J. Mater. Res. Technol. 2, 238 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao, and L. Jiang: Effect of aluminum on microstructure, mechanical properties and pitting corrosion resistance of ultra-pure 429 ferritic stainless steels. Mater. Des. 65, 682 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    S.J. Kim and S.G. Hong: A study on pitting initiation mechanism of super-austenitic stainless steel weld in chloride environment. J. Mater. Res. 31, 3345 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    ASTM G48: Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution (ASTM International, West Conshohocken, 2011).

    Google Scholar 

  30. 30.

    S.J. Kim and S.G. Hong: Evaluation of localized corrosion resistance and clarification of the corrosion mechanism of super austenitic stainless steel weld. POSCO Technol. Rep. 20(1), 1–8 (2015).

    Google Scholar 

  31. 31.

    D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys (Chapman & Hall, London, UK, 1997).

    Google Scholar 

  32. 32.

    I. Kaprálik: Thermal expansion of spinels MgCr2O4, MgAl2O4 and MgFe2O4. Chem. Zvesti 23, 665 (1969).

    Google Scholar 

  33. 33.

    H.S. Khatak and B. Raj: Corrosion of Austenitic Stainless Steels, Mechanism, Mitigation and Monitoring (Alpha Science International, Oxford, UK, 2002).

    Google Scholar 

  34. 34.

    O. Smuk, P. Nenonen, H. Hänninen, and J. Liimatainen: Microstructures of a powder metallurgy-hot-isostatically pressed super duplex stainless steel forming in industrial heat treatments. Metall. Mater. Trans. A 35A, 2103 (2004).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This paper was supported by Sunchon National University Research Fund in 2016.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sung Jin Kim or Min-suk Oh.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, S.J., Hong, S.G. & Oh, Ms. Effect of metallurgical factors on the pitting corrosion behavior of super austenitic stainless steel weld in an acidic chloride environment. Journal of Materials Research 32, 1343–1350 (2017). https://doi.org/10.1557/jmr.2017.65

Download citation