Long-time molecular dynamics simulations on massively parallel platforms: A comparison of parallel replica dynamics and parallel trajectory splicing


Molecular dynamics (MD) is one of the most widely used techniques in computational materials science. By providing fully resolved trajectories, it allows for a natural description of static, thermodynamic, and kinetic properties. A major hurdle that has hampered the use of MD is the fact that the timescales that can be directly simulated are very limited, even when using massively parallel computers. In this study, we compare two time-parallelization approaches, parallel replica dynamics (ParRep) and parallel trajectory splicing (ParSplice), that were specifically designed to address this issue for rare event systems by leveraging parallel computing resources. Using simulations of the relaxation of small disordered platinum nanoparticles, a comparative performance analysis of the two methods is presented. The results show that ParSplice can significantly outperform ParRep in the common case where the trajectory remains trapped for a long time within a region of configuration space but makes rapid structural transitions within this region.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    J.L. Lions, Y. Maday, and G. Turinici: A “parareal” in time discretization of PDE’s. C. R. Acad. Sci. Paris Sér. I Math. 332, 661–668 (2001).

    Article  Google Scholar 

  2. 2.

    A.F. Voter: Hyperdynamics: Accelerated molecular dynamics of infrequent events. Phys. Rev. Lett. 78, 3908–3911 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    R.J. Zamora, B.P. Uberuaga, D. Perez, and A.F. Voter: The modern temperature-accelerated dynamics approach. Annu. Rev. Chem. Biomol. Eng. 7, 87–110 (2016).

    Article  Google Scholar 

  4. 4.

    M.R. Sorensen and A.F. Voter: Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys. 112, 9599–9606 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    G. Henkelman and H. Jonsson: Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J. Chem. Phys. 115, 9657–9666 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    D. Perez, B.P. Uberuaga, and A.F. Voter: The parallel replica dynamics method—Coming of age. Comput. Mater. Sci. 100, 90–103 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    A.F. Voter: Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57, 13985–13988 (1998).

    Article  Google Scholar 

  8. 8.

    D. Perez, E.D. Cubuk, A. Waterland, E. Kaxiras, and A.F. Voter: Long-time dynamics through parallel trajectory splicing. J. Chem. Theory Comput. 12, 18–28 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    C. Le Bris, T. Lelievre, M. Luskin, and D. Perez: A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods Appl. 18, 119–146 (2012).

    Google Scholar 

  10. 10.

    F. El-Mellouhi, N. Mousseau, and L.J. Lewis: Kinetic activation-relaxation technique: An off-lattice self-learning kinetic Monte Carlo algorithm. Phys. Rev. B 78, 153202 (2008).

    Article  Google Scholar 

  11. 11.

    K.A. Fichthorn and Y. Lin: A local superbasin kinetic Monte Carlo method. J. Chem. Phys. 138, 164104 (2013).

    Article  Google Scholar 

  12. 12.

    A. Chatterjee and A.F. Voter: Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants. J. Chem. Phys. 132, 194101 (2010).

    Article  Google Scholar 

  13. 13.

    M.A. Novotny: Monte Carlo algorithms with absorbing Markov chains: Fast local algorithms for slow dynamics. Phys. Rev. Lett. 74, 1 (1995).

    CAS  Article  Google Scholar 

  14. 14.

    D. Wales: Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge University Press, Cambridge, United Kingdom, 2003).

    Google Scholar 

  15. 15.

    Available at: http://gitlab.com/exaalt.

  16. 16.

    S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Article  Google Scholar 

  17. 17.

    A.F. Voter and S.P. Chen: Accurate interatomic potentials for Ni, Al and Ni3Al. MRS Online Proc. Libr. 82, 175–180, (1986).

    Article  Google Scholar 

  18. 18.

    A.F. Voter: Embedded Atom Method Potentials for Seven FCC Metals: Ni, Pd, Pt, Cu, Ag, Au, and Al; Los Alamos Unclassified Technical Report, LA-UR-93–3901 (1993).

    Google Scholar 

  19. 19.

    T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, and D.M. Herlach: Icosahedral short-range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89, 075507 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    H. Reichert, O. Klein, H. Dosch, and M. Donk: Observation of five-fold local symmetry in liquid lead. Nature 408, 839 (2000).

    CAS  Article  Google Scholar 

  21. 21.

    P. Deuflhard and M. Weber: Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 398, 161–184 (2005).

    Article  Google Scholar 

  22. 22.

    R. Huang, L-T. Lo, Y. Wen, A.F. Voter, and D. Perez: Cluster analysis of accelerated molecular dynamics simulations: A case study of the decahedron to icosahedron transition in Pt nanoparticles. J. Chem. Phys. 147, 152717 (2017).

    Article  Google Scholar 

  23. 23.

    A.S. Clarke and H. Jónsson: Structural changes accompanying densification of random hard-sphere packings. Phys. Rev. E 47, 3975 (1993).

    CAS  Article  Google Scholar 

  24. 24.

    E. Apra, F. Baletto, R. Ferrando, and A. Fortunelli: Amorphization mechanism of icosahedral metal nanoclusters. Phys. Rev. Lett. 93, 065502 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    J.P.K. Doye, M.A. Miller, and D.J. Wales: The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys. 110, 6896–6906 (1999).

    CAS  Article  Google Scholar 

Download references


This work was supported by the United States Department of Energy (DOE), Office of Basic Energy Sciences, Materials Sciences and Engineering Division (D.P., A.F.V.) and by the China Scholarship Council (R.H.). The development and implementation of the ParSplice code were initially supported by LANL/LDRD Project No. 20150557ER and now by the DOE’s Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering, and early testbed platforms, in support of the nation’s exascale computing imperative. We gratefully acknowledge computing resources from the Los Alamos Institutional Computing program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security administration of the US DOE under Contract No. DE-AC52-06NA25396.

Author information



Corresponding author

Correspondence to Danny Perez.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perez, D., Huang, R. & Voter, A.F. Long-time molecular dynamics simulations on massively parallel platforms: A comparison of parallel replica dynamics and parallel trajectory splicing. Journal of Materials Research 33, 813–822 (2018). https://doi.org/10.1557/jmr.2017.456

Download citation