Enhanced electrocatalytic hydrogen evolution activity of nickel foam by low-temperature-oxidation


Designing advanced nonprecious metal electrocatalysts to reduce overpotential and accelerate hydrogen evolution reaction (HER) has attracted considerable attention. However, improving the sluggish kinetics for electrocatalytic HER in alkaline media is still a great challenge. Herein, we found that amorphous NiO nanoclusters directly grown on nickel foam (NiO/NF) as a bifunctional HER catalyst demonstrated an ultrahigh electrocatalytic activity in alkaline environment. Such excellent HER performance of NiO/NF might mainly originate from the exposed interfaces of metallic Ni and amorphous NiO. The coordinatively unsaturated amorphous NiO domain is propitious to the adsorption of water molecule and the successive cleavage of HO–H bond, while the neighboring metallic Ni domain is beneficial to the adsorption of resulting Hads intermediate and recombination into hydrogen molecules, thus expediting the HER toward lower overpotential. These findings may open a window to the design and preparation of earth-abundant, low-cost metal oxide/metal electrocatalysts with desirable HER activities.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6


  1. 1.

    J.A. Turner: Sustainable hydrogen production. Science 305, 972 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    G.S. Hutchings, Y. Zhang, J. Li, B.T. Yonemoto, X. Zhou, K. Zhu, and F. Jiao: In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts. J. Am. Chem. Soc. 137, 4223 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    X.X. Zou and Y. Zhang: Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, and J.K. Nørskov: Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    J.K. Norskov and C.H. Christensen: Toward efficient hydrogen production at surfaces. Science 312, 1322 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielse, and S. Horch: Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L.S. Li, and S. Jin: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Zhang, Y. Xie, Y. Zhou, X. Wang, and K. Pan: Well dispersed Fe2N nanoparticles on surface of nitrogen-doped reduced graphite oxide for highly efficient electrochemical hydrogen evolution. J. Mater. Res. 32, 1770 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    S.C. Lin, Y.F. Chiu, P.W. Wu, Y.F. Hsieh, and C.Y. Wu: Templated fabrication of nanostructured Ni brush for hydrogen evolution reaction. J. Mater. Res. 25, 2001 (2011).

    Article  CAS  Google Scholar 

  10. 10.

    I.S. McKay, J.A. Schwalbe, E.D. Goodman, J.J. Willis, A. Majumdar, and M. Cargnello: Elucidating the synergistic mechanism of nickel–molybdenum electrocatalysts for the hydrogen evolution reaction. MRS Commun. 6, 241 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    M. Blouin, D. Guay, J. Huot, and R. Schulz: High energy ball-milled Ti2RuFe electrocatalyst for hydrogen evolution in the chlorate industry. J. Mater. Res. 12, 1492 (1997).

    CAS  Article  Google Scholar 

  12. 12.

    L. Tian, J.B. Murowchick, and X. Chen: Improving the activity of CoxP nanoparticles for electrochemical hydrogen evolution by hydrogenation. Sustainable Energy Fuels 1, 62 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    L. Tian, X. Yan, X. Chen, L. Liu, and X. Chen: One-pot, large-scale, facile synthesis of CoxP nanocatalysts for electrochemical hydrogen evolution. J. Mater. Chem. A 4, 13011 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    L. Tian, X. Yan, and X. Chen: Electrochemical activity of iron phosphide nanoparticles in hydrogen evolution reaction. ACS Catal. 6, 5441 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    J.R. McKone, B.F. Sadtler, C.A. Werlang, N.S. Lewis, and H.B. Gray: Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3, 166 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    C. González-Buch, I. Herraiz-Cardona, E. Ortega, J. García-Antón, and V. Pérez-Herranz: Study of the catalytic activity of 3D macroporous Ni and NiMo cathodes for hydrogen production by alkaline water electrolysis. J. Appl. Electrochem. 46, 791 (2016).

    Article  CAS  Google Scholar 

  17. 17.

    R. Solmaz and G. Kardas: Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. Electrochim. Acta 54, 3726 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    X. Wang, R. Su, H. Aslan, J. Kibsgaard, S. Wendt, L. Meng, M. Dong, Y. Huang, and F. Besenbacher: Tweaking the composition of NiMoZn alloy electrocatalyst for enhanced hydrogen evolution reaction performance. Nano Energy 12, 9 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    C.G. Buch, I.H. Cardona, E. Ortega, J.G. Anton, and V.P. Herranz: Study of the catalytic activity of 3D macroporous Ni and NiMo cathodes for hydrogen production by alkaline water electrolysis. J. Appl. Electrochem. 46, 791 (2016).

    Article  CAS  Google Scholar 

  20. 20.

    M.M. Jaksic: Electrocatalysis of hydrogen evolution in the light of the brewer-engel theory for bonding in metals and intermetallic phases. Electrochim. Acta 29, 1539 (1984).

    CAS  Article  Google Scholar 

  21. 21.

    L.L. Feng, G.T. Yu, Y.Y. Wu, G.D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, and X. Zou: High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137, 14023 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    G.F. Chen, T.Y. Ma, Z.Q. Liu, N. Li, Y.Z. Su, K. Davey, and S.Z. Qiao: Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 26, 3314 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    J.L. Lv, H. Miura, Y. Meng, and T.X. Liang: Synthesis of Ni3S2 nanotube arrays on nickel foam by catalysis of thermal reduced graphene for hydrogen evolution reaction. Appl. Surf. Sci. 399, 769 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    J.Y. Li, J. Li, X.M. Zhou, Z.M. Xia, W. Gao, Y.Y. Ma, and Y.Q. Qu: Highly efficient and robust nickel phosphides as bifunctional electrocatalysts for overall water-splitting. ACS Appl. Mater. Interfaces 8, 10826 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Y.F. Xu, M.R. Gao, Y.R. Zheng, J. Jiang, and S.H. Yu: Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 52, 8546 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    J. Wang, S. Mao, Z. Liu, Z. Wei, H. Wang, Y. Chen, and Y. Wang: Dominating role of Ni0 on the interface of Ni/NiO for enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9, 7139 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan, M.C. Lin, B. Zhang, Y. Hu, D.Y. Wang, J. Yang, S.J. Pennycook, B.J. Hwang, and H. Dai: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    X. Yan, L. Tian, and X. Chen: Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. J. Power Sources 300, 336 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    X. Yan, L. Tian, K. Li, S. Atkins, H. Zhao, J. Murowchick, L. Liu, and X. Chen: FeNi3/NiFeOx nanohybrids as highly efficient bifunctional electrocatalysts for overall water splitting. Adv. Mater. Interfaces 3, 1600368 (2016).

    Article  CAS  Google Scholar 

  30. 30.

    X. Yan, L. Tian, S. Atkins, Y. Liu, J. Murowchick, and X. Chen: Converting CoMoO4 into CoO/MoOx for overall water splitting by hydrogenation. ACS Sustainable Chem. Eng. 4, 3743 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    X. Yan, L. Tian, J.B. Murowchick, and X. Chen: Partially amorphized MnMoO4 for highly efficient energy storage and hydrogen evolution reaction. J. Mater. Chem. A 4, 3683 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    X. Yan, K. Li, L. Lyu, F. Song, J. He, D. Niu, L. Liu, X. Hu, and X. Chen: From water oxidation to reduction: Transformation from NixCo3− xO4 nanowires to NiCo/NiCoOx heterostructures. ACS Appl. Mater. Interfaces 8, 3208 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    X. Yan, L. Tian, M. He, and X. Chen: Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 15, 6015 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    X. Liu, X. Wang, X. Yuan, W. Dong, and F. Huang: Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis. J. Mater. Chem. A 4, 167 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Z. Zhang, Q. Wang, C. Zhao, S. Min, and X. Qian: One-step hydrothermal synthesis of 3D petal-like Co9S8/RGO/Ni3S2 composite on nickel foam for high-performance supercapacitors. ACS Appl. Mater. Interfaces 7, 4861 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, and N.M. Markovic: Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334, 1256 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    M.K. Bates, Q. Jia, N. Ramaswamy, R.J. Allen, and S. Mukerjee: Composite Ni/NiO–Cr2O3 catalyst for alkaline hydrogen evolution reaction. J. Phys. Chem. C 119, 5467 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    M.S. Faber and S. Jin: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Y. Zhang, P. Ju, C. Zhao, and X. Qian: In-situ grown of MoS2/RGO/MoS2@Mo nanocomposite and its supercapacitor performance. Electrochim. Acta 219, 693 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    D. Merki, S. Fierro, H. Vrubel, and X.L. Hu: Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    L. Soriano, I. Preda, A. Gutiérrez, and S. Palacín: Surface effects in the Ni 2 p X-ray photoemission spectra of NiO. Phys. Rev. B 75, 233417 (2007).

    Article  CAS  Google Scholar 

  42. 42.

    J. Zheng, W. Zhou, T. Liu, S. Liu, C. Wang, and L. Guo: Homologous NiO//Ni2P nanoarrays grown on nickel foams: A well matched electrode pair with high stability in overall water splitting. Nanoscale 9, 4409 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.G. Park, S.D. Tilley, H.J. Fan, and M. Grätzel: Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345, 1593 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    S.T. Finn and J.E. Macdonald: Contact and support considerations in the hydrogen evolution reaction activity of petaled MoS2 electrodes. ACS Appl. Mater. Interfaces 8, 25185 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen, and X. Feng: Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci. 9, 2789 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    I.M. Kodintsev and S. Trasatti: Electrocatalysis of H2 evolution on RuO2 + IrO2 mixed oxide electrodes. Electrochim. Acta 39, 1803 (1994).

    CAS  Article  Google Scholar 

  47. 47.

    I.A. Pašti, M. Leetmaa, and N.V. Skorodumova: General principles for designing supported catalysts for hydrogen evolution reaction based on conceptual Kinetic Monte Carlo modeling. Int. J. Hydrogen Energy 41, 2526 (2016).

    Article  CAS  Google Scholar 

  48. 48.

    M.A. Lukowski, A.S. Daniel, C.R. English, F. Meng, A. Forticaux, R.J. Hamers, and S. Jin: Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7, 2608 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    D. Merki, H. Vrubel, L. Rovelli, S. Fierro, and X. Hu: Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3, 2515 (2012).

    CAS  Article  Google Scholar 

  50. 50.

    F. Li, J. Li, X. Lin, X. Li, Y. Fang, L. Jiao, X. An, Y. Fu, J. Jin, and R. Li: Designed synthesis of multi-walled carbon nanotubes@Cu@MoS2 hybrid as advanced electrocatalyst for highly efficient hydrogen evolution reaction. J. Power Sources 300, 301 (2015).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Grant No. 51372080) and the Research Foundation of Education Bureau of Hunan Province, China (Grant Nos. 16C0717 and 17K039).

Author information



Corresponding authors

Correspondence to Yafei Kuang or Minjie Zhou or Xiaobo Chen.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, B., Kuang, Y., Hou, Z. et al. Enhanced electrocatalytic hydrogen evolution activity of nickel foam by low-temperature-oxidation. Journal of Materials Research 33, 213–224 (2018). https://doi.org/10.1557/jmr.2017.446

Download citation