Production of fine-grained foils by large strain extrusion-machining of textured Ti–6Al–4V

Abstract

The large strain extrusion-machining process has been used to refine the microstructure in a Titanium alloy (Ti–6Al–4V). The unconstrained cutting or machining of Ti–6Al–4V entails the formation of shear localized chips at nearly all cutting speeds, thereby hindering the use of extrusion-machining to produce fine-grained materials. The present effort attempts to suppress shear localization by the suitable modification of texture in Ti–6Al–4V through the cold-rolling process prior to extrusion-machining. Ti–6Al–4V plates were cold rolled to 30, 40, 45, and 47% thickness reductions. These textured plates were extrusion machined using a suitably designed fixture leading to fine-grained continuous foils with increased hardness. Microscopy has revealed that the suppression of shear localization in the foils produced from plates which are cold rolled to more than 40% of thickness reduction is triggered by texture formation. For thickness reductions slightly lower than 40% (e.g., 30%), suppression can be achieved only by a combination of texture and extrusion.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    S. Swaminathan, M.R. Shankar, S. Lee, J. Hwang, A.H. King, R.F. Kezar, B.C. Rao, T.L. Brown, S. Chandrasekar, W.D. Compton, and K.P. Trumble: Large strain deformation and ultra-fine-grained materials by machining. Mater. Sci. Eng., A 410–411, 358 (2005).

    Article  Google Scholar 

  2. 2.

    T.L. Brown, S. Swaminathan, S. Chandrasekar, W.D. Compton, A.H. King, and K.P. Trumble: Low-cost manufacturing process for nanostructured metals and alloys. J. Mater. Res. 17, 2484 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    B. Farrokh and A.S. Khan: Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: Synthesis, experiment, and constitutive modelling. Int. J. Plast. 25, 715 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    R. Valiev: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    G. Lütjering and J.C. Williams: Titanium, 2nd ed. (Springer Berlin, Germany, 2007); pp. 34–209.

    Google Scholar 

  6. 6.

    Y. Ko, W. Jung, D. Shin, and C. Lee: Effects of temperature and initial microstructure on the equal channel angular pressing of Ti–6Al–4V alloy. Scr. Mater. 48, 197 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    Y.C. Wang and T.G. Langdon: Effect of heat treatment on microstructure and microhardness evolution in a Ti–6Al–4V alloy processed by high-pressure torsion. J. Mater. Sci. 48, 4646 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    G.A.S. Blair, T.F. Fannin, and D.S. Gordon: Titanium-strip cranioplasty. Br. Med. J. 2, 907 (1976).

    CAS  Article  Google Scholar 

  9. 9.

    C. Saldana, P. Yang, J.B. Mann, W. Moscoso, D.D. Gill, S. Chandrasekar, and K.P. Trumble: Micro-scale components from high-strength nanostructured alloys. Mater. Sci. Eng., A 503, 172 (2009).

    Article  Google Scholar 

  10. 10.

    H. Zhen-Bin and R. Komanduri: On thermomechanical model of shear instability in machining. CIRP Ann. 44, 69 (1995).

    Article  Google Scholar 

  11. 11.

    R.F. Recht: Catastrophic thermoplastic shear. J. Appl. Mech. 31, 189 (1964).

    Article  Google Scholar 

  12. 12.

    R. Komanduri: Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear 76, 15 (1982).

    Article  Google Scholar 

  13. 13.

    A. Vyas and M.C. Shaw: Mechanics of saw-tooth chip formation in metal cutting. J. Manuf. Sci. Eng. Trans. ASME 121, 163 (1999).

    Article  Google Scholar 

  14. 14.

    K. Nakayama: The formation of saw-toothed chip in metal cutting. Proc. Int. Conf. Prod. Eng. 1, 572 (1974).

    Google Scholar 

  15. 15.

    S. Roy, S. Suwas, S. Tamiriskandala, R. Srinivasan, and D.B. Miracle: Microstructure and texture evolution during beta extrusion of boron modified Ti–6Al–4V alloy. Mater. Sci. Eng., A 540, 152 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    M. Peters, A. Gysler, and G. Lütjering: Influence of texture on fatigue properties of Ti–6Al–4V. Metall. Trans. A 15, 1597 (1984).

    Article  Google Scholar 

  17. 17.

    S. Zaefferer: A study of active deformation systems in titanium alloys: Dependence on alloy composition and correlation with deformation texture. Mater. Sci. Eng., A 344, 20 (2003).

    Article  Google Scholar 

  18. 18.

    B. Mehdi, H. Azzeddine, R. Badji, V. Ji, B. Alili, and D. Bradai: Characterization of the deformation texture after tensile test and cold rolling of a Ti–6Al–4V sheet alloy. IOP Conf. Ser. Mater. Sci. Eng. 82, 012018 (2015).

    Article  Google Scholar 

  19. 19.

    S. Sun, M. Brandt, and M.S. Dargusch: Characteristics of cutting forces and chip formation in machining of titanium alloys. Inter. J. Mach. Tools Manuf. 49, 561 (2009).

    Article  Google Scholar 

  20. 20.

    ASM International Handbook Committe: ASM Handbook Volume 4: Heat Treating (ASM International, Materials Park, Ohio, 1991); p. 915.

    Google Scholar 

  21. 21.

    Y. Guo, C. Saldana, W.D. Compton, and S. Chandrasekar: Controlling deformation and microstructure on machined surfaces. Acta Mater. 59, 4538 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    M. Efe, W. Moscoso, K.P. Trumble, W.D. Compton, and S. Chandrasekar: Mechanics of large strain extrusion machining and application to deformation processing of magnesium alloys. Acta Mater. 60, 2031 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    T.L. Brown, C. Saldana, T.G. Murthy, J.B. Mann, Y. Guo, L.F. Allard, A.H. King, W.D. Compton, K.P. Trumble, and S. Chandrasekar: A study of the interactive effects of strain, strain rate and temperature in severe plastic deformation of copper. Acta Mater. 57, 5491 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    W. Moscoso, M.R. Shankar, J. Mann, W. Compton, and S. Chandrasekar: Bulk nanostructured materials by large strain extrusion machining. J. Mater. Res. 22 (1), 201 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    D.L. Prakash, R. Ding, R. Moat, I. Jones, P. Withers, J.Q. da Fonseca, and M. Preuss: Deformation twinning in Ti–6Al–4V during low strain rate deformation to moderate strains at room temperature. Mater. Sci. Eng., A 527, 5734 (2010).

    Article  Google Scholar 

  26. 26.

    F. Bachmann, R. Hielscher, and H. Schaeben: Texture analysis with MTEX-free and open source software toolbox. Solid State Phenom. 160, 63 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    S.L.R. da Silva, L.O. Kerber, L. Amaral, and C.A. dos Santos: X-ray diffraction measurements of plasma-nitrided Ti–6Al–4V. Surf. Coat. Technol. 116, 342 (1999).

    Article  Google Scholar 

  28. 28.

    S. Suwas and N.P. Gurao: Crystallographic texture in materials. J. Indian Inst. Sci. 88, 151 (2008).

    CAS  Google Scholar 

  29. 29.

    K. Morii, H. Mecking, G. Lütjering, and Y. Nakayama: Stability of the texture of Ti–6Al–4V during rolling in the two-phase field. Scr. Metall. 20, 1795 (1986).

    CAS  Article  Google Scholar 

  30. 30.

    M. Philippe, E. Bouzy, and J-J. Fundenberger: Textures and anisotropy of titanium alloys. Mater. Sci. Forum 273, 511 (1998).

    Article  Google Scholar 

  31. 31.

    H. Lee, C. Esling, and H. Bunge: Development of the rolling texture in titanium. Textures Microstruct. 7, 317 (1988).

    CAS  Article  Google Scholar 

  32. 32.

    ASTM E407-07 E1: Standard Practice for Microetching Metals and Alloys (ASTM International, West Conshohocken, PA, 2007).

    Google Scholar 

  33. 33.

    D. Sagapuram, H. Yeung, Y. Guo, A. Mahato, R. M’Saoubi, W.D. Compton, K.P. Trumble, and S. Chandrasekar: On control of flow instabilities in cutting of metals. CIRP Ann. 64, 49 (2015).

    Article  Google Scholar 

  34. 34.

    D. Sagapuram, K. Viswanathan, A. Mahato, N.K. Sundaram, R. M’Saoubi, K.P. Trumble, and S. Chandrasekar: Geometric flow control of shear bands by suppression of viscous sliding. Proc. R. Soc. A 472, 20160167 (2016).

    Article  Google Scholar 

  35. 35.

    X. Huang, K. Suzuki, M. Yuasa, and Y. Chino: Microstructural and textural evolution of pure titanium during differential speed rolling and subsequent annealing. J. Mater. Sci. 12, 3166 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge Professors N.V. Ravi Kumar and V. Subramanya Sarma in the Department of Metallurgical and Materials Engineering at IIT Madras for their useful suggestions. Support rendered by the staff at the workshop in the Department of Engineering Design; the Physical Metallurgy Laboratory; and the Metal Forming Laboratory and Mechatronics Laboratory, IIT Madras are all gratefully acknowledged. The authors also acknowledge XRD facilities offered by the Department of Metallurgical and Materials Engineering at IIT Bombay to conduct bulk texture measurements. We are also thankful to the materials and manufacturing panel of the Aeronautics Research & Development Board (ARDB) for their support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Balkrishna C. Rao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palaniappan, K., Murthy, H. & Rao, B.C. Production of fine-grained foils by large strain extrusion-machining of textured Ti–6Al–4V. Journal of Materials Research 33, 108–120 (2018). https://doi.org/10.1557/jmr.2017.445

Download citation