Flexible solution-processed high-voltage organic thin film transistor

Abstract

6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and pentacene-based high-voltage organic thin film transistors (HVOTFTs) have been fabricated on solid and flexible substrates via a low-temperature (<100 °C) solution-processed and vacuum-deposited fabrication method. A high-k dielectric Bi1.5Zn1Nb1.5O7 and an organic dielectric parylene-C have been incorporated into the transistor design. The reliability of the HVOTFTs was analyzed under flexure, where a nonsaturating IV characteristic behavior was observed. Here, the HVOTFT exhibited a mobility μ of 0.018 cm2/(V s) and a large breakdown voltage of ∣ VDS∣ > 120 V and >550 V for TIPS-pentacene and pentacene devices, respectively. The large breakdown voltages are attributed to an organic semiconductor channel region which is partially gated, allowing for a large potential drop. Thiolphenol-based SAMs were used to help improve charge injection. Electrical measurements were also performed with samples designed with a top metal field plate to improve control of the charge carrier within the channel.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

References

  1. 1.

    R. Brown, C.P. Jarrett, D.M. de Leeuw, and M. Matters: Field-effect transistors made from solution-processed organic semiconductors. Synth. Met. 88, 37–55 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    S.K. Park, T.N. Jackson, J.E. Anthony, and D.A. Mourey: High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors. Appl. Phys. Lett. 91, 063514 (2007).

    Article  Google Scholar 

  3. 3.

    Y. Diao, L. Shaw, Z. Bao, and S.C.B. Mannsfeld: Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 7, 2145 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    H. Sirringhaus: Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17, 2411–2425 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    I. Yagi, N. Hirai, Y. Miyamoto, M. Noda, A. Imaoka, N. Yoneya, K. Nomoto, J. Kashara, A. Yumoto, and T. Urabe: A flexible full-color AMOLED display driven by OTFTs. J. Soc. Inf. Disp. 16 (1), 15–20 (2008).

    Article  Google Scholar 

  6. 6.

    G. Schwartz, B.C-K. Tee, J. Mei, A.L. Appleton, D.H. Kim, H. Wang, and Z. Bao: Flexible polymer transistors with high pressure sensitivity for applications in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013).

    Article  Google Scholar 

  7. 7.

    R. Tinivella, V. Camarchia, M. Pirola, S. Shen, and G. Ghione: Simulation and design of OFET RFIDs through an analog/digital physics-based library. Org. Electron. 12 (8), 1328–1335 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk: Organic electronics on banknotes. Adv. Mater. 23, 654–658 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    C. Liao and F. Yan: Organic semiconductors in organic thin-film transistor-based chemical and biological sensors. Polym. Rev. 53 (3), 352–406 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    C. Yang, J. Yoon, S.H. Kim, K. Hong, D.S. Chung, K. Heo, C.E. Park, and M. Ree: Bending-stress-driven phase transitions in pentacene thin film films for flexible organic field-effect transistors. Appl. Phys. Lett. 92, 243305 (2008).

    Article  Google Scholar 

  11. 11.

    O.D. Jurchescu, M. Popinciuc, B.J. van Wees, and T.T.M. Palstra: Interface-controlled, high-mobility organic transistors. Adv. Mater. 19, 688–692 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    K.S. Karim, P. Servati, and A. Nathan: High voltage amorphous silicon TFT for use in large area applications. Microelectron. J. 35, 311–315 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    T. Unagami and O. Kogure: High-voltage TFT fabricated in recrystallized polycrystalline silicon. IEEE Trans. Electron Devices 35 (3), 314–319 (1988).

    CAS  Article  Google Scholar 

  14. 14.

    R.A. Martin, V.M. Da Costa, M. Hack, and J.G. Shaw: High-voltage amorphous silicon thin-film transistors. IEEE Trans. Electron Devices 40 (3), 634–644 (1993).

    CAS  Article  Google Scholar 

  15. 15.

    M. Ito, C. Miyazaki, M. Ishizaki, M. Kon, N. Ikeda, T. Okubo, R. Matsubara, K. Hatta, Y. Ugajin, and N. Sekine: Application of amorphous oxide TFT to electrophoretic display. J. Non-Cryst. Solids 354, 2777–2782 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    U. Kato, T. Sekitani, M. Takamiya, M. Doi, K. Asaka, T. Sakurai, and T. Someya: Sheet-type braille display by integrating organic field-effect transistors and polymeric actuators. IEEE Trans. Electron Devices 54 (2), 202–209 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    W. Zhao, J. Law, D. Waechter, Z. Huang, and J.A. Rowlands: Digital radiology using active matrix readout of amorphous selenium: Detectors with high voltage protection. Med. Phys. 25 (4), 539–549 (1998).

    CAS  Article  Google Scholar 

  18. 18.

    Y. Choi, I-D. Kim, H.L. Tuller, and A.I. Akinwande: Low-voltage organic transistors and depletion-load inverters with high-K pyrochlore BZN gate dielectric on polymer substrate. IEEE Trans. Electron Devices 52 (12), 2819–2824 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    A. Shih and A.I. Akinwande: Solution-processed high-voltage organic thin film transistor. MRS Adv. 2, 2961–2966 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    G.J. Chae, S-H. Jeong, J.H. Baek, B. Walker, C.K. Song, and J.H. Seo: Improved performance in TIPS-pentacene field effect transistors using solvent additives. J. Mater. Chem. C 1, 4216 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    S.K. Park, J.E. Anthony, and T.N. Jackson: Solution-processed TIPS-pentacene organic thin-film-transistor circuits. IEEE Electron Device Lett. 28 (10), 877 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    M.A. Smith, R.P. Gowers, A. Shih, and A.I. Akinwande: High-voltage organic thin-film transistors on flexible and curved surfaces. IEEE Trans. Electron Devices 62 (12), 4213–4219 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    L. Wang, D. Fine, D. Basu, and A. Dodabalapur: Electric-field-dependent charge transport in organic thin-film transistors. J. Appl. Phys. 101 (5), 054515 (2007).

    Article  Google Scholar 

  24. 24.

    J. Wade, F. Steiner, D. Niedzialek, D.T. James, Y. Jung, D-J. Yun, D.D.C. Bradley, J. Nelson, and J-S. Kim: Charge mobility anisotropy of functionalized pentacenes in organic field effect transistors fabricated by solution processing. J. Mater. Chem. C 2, 10110 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    H. Kim, Z. Meihui, N. Battaglini, P. Lang, and G. Horowitz: Large enhancement of hole injection in pentacene by modification of gold with conjugated self-assembled monolayers. Org. Electron. 14, 2108–2113 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    P. Marmon, N. Battaglini, P. Lang, G. Horowitz, J. Hwang, A. Kahn, C. Amato, and P. Calas: Improving charge injection in organic thin-film transistors with tiol-based self-assembled monolayers. Org. Electron. 9, 419–424 (2008).

    Article  Google Scholar 

  27. 27.

    J-P. Hong, A-Y. Park, S. Lee, J. Kang, N. Shin, and D.Y. Yoon: Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors. Appl. Phys. Lett. 92, 143311 (2008).

    Article  Google Scholar 

  28. 28.

    J.G. Shaw, M.G. Hack, and R.A. Martin: Metastable effects in high-voltage amorphous silicon thin-film transistors. J. Appl. Phys. 69 (4), 2667–2672 (1991).

    CAS  Article  Google Scholar 

  29. 29.

    R.A. Martin, P.K. Yap, M. Hack, and H. Tuan: Device design considerations of a novel high voltage amorphous silicon thin film transistor. Proc. Int. Electron Devices Meet. 33, 440–443 (1987).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Dr. Melissa Smith and Dr. Annie Wang for their great insight and guidance in the project, Kurt Broderick, Dennis Ward, and Gary Riggott for all their technical assistance and training done at the Microsystems Technology Laboratories, Whitney Rochelle Hess for her help setting up the surface-assembled monolayer experiment and keeping the lab safe, as well as Dr. Charlie Settens and the Center for Materials Science and Engineering for their assistance in XRD measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andy Shih.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shih, A., Schell, E. & Akinwande, A.I. Flexible solution-processed high-voltage organic thin film transistor. Journal of Materials Research 33, 149–160 (2018). https://doi.org/10.1557/jmr.2017.428

Download citation