Abstract
6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and pentacene-based high-voltage organic thin film transistors (HVOTFTs) have been fabricated on solid and flexible substrates via a low-temperature (<100 °C) solution-processed and vacuum-deposited fabrication method. A high-k dielectric Bi1.5Zn1Nb1.5O7 and an organic dielectric parylene-C have been incorporated into the transistor design. The reliability of the HVOTFTs was analyzed under flexure, where a nonsaturating I–V characteristic behavior was observed. Here, the HVOTFT exhibited a mobility μ of 0.018 cm2/(V s) and a large breakdown voltage of ∣ VDS∣ > 120 V and >550 V for TIPS-pentacene and pentacene devices, respectively. The large breakdown voltages are attributed to an organic semiconductor channel region which is partially gated, allowing for a large potential drop. Thiolphenol-based SAMs were used to help improve charge injection. Electrical measurements were also performed with samples designed with a top metal field plate to improve control of the charge carrier within the channel.
This is a preview of subscription content, access via your institution.







References
- 1.
R. Brown, C.P. Jarrett, D.M. de Leeuw, and M. Matters: Field-effect transistors made from solution-processed organic semiconductors. Synth. Met. 88, 37–55 (1997).
- 2.
S.K. Park, T.N. Jackson, J.E. Anthony, and D.A. Mourey: High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors. Appl. Phys. Lett. 91, 063514 (2007).
- 3.
Y. Diao, L. Shaw, Z. Bao, and S.C.B. Mannsfeld: Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 7, 2145 (2014).
- 4.
H. Sirringhaus: Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17, 2411–2425 (2005).
- 5.
I. Yagi, N. Hirai, Y. Miyamoto, M. Noda, A. Imaoka, N. Yoneya, K. Nomoto, J. Kashara, A. Yumoto, and T. Urabe: A flexible full-color AMOLED display driven by OTFTs. J. Soc. Inf. Disp. 16 (1), 15–20 (2008).
- 6.
G. Schwartz, B.C-K. Tee, J. Mei, A.L. Appleton, D.H. Kim, H. Wang, and Z. Bao: Flexible polymer transistors with high pressure sensitivity for applications in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013).
- 7.
R. Tinivella, V. Camarchia, M. Pirola, S. Shen, and G. Ghione: Simulation and design of OFET RFIDs through an analog/digital physics-based library. Org. Electron. 12 (8), 1328–1335 (2011).
- 8.
U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk: Organic electronics on banknotes. Adv. Mater. 23, 654–658 (2011).
- 9.
C. Liao and F. Yan: Organic semiconductors in organic thin-film transistor-based chemical and biological sensors. Polym. Rev. 53 (3), 352–406 (2013).
- 10.
C. Yang, J. Yoon, S.H. Kim, K. Hong, D.S. Chung, K. Heo, C.E. Park, and M. Ree: Bending-stress-driven phase transitions in pentacene thin film films for flexible organic field-effect transistors. Appl. Phys. Lett. 92, 243305 (2008).
- 11.
O.D. Jurchescu, M. Popinciuc, B.J. van Wees, and T.T.M. Palstra: Interface-controlled, high-mobility organic transistors. Adv. Mater. 19, 688–692 (2007).
- 12.
K.S. Karim, P. Servati, and A. Nathan: High voltage amorphous silicon TFT for use in large area applications. Microelectron. J. 35, 311–315 (2004).
- 13.
T. Unagami and O. Kogure: High-voltage TFT fabricated in recrystallized polycrystalline silicon. IEEE Trans. Electron Devices 35 (3), 314–319 (1988).
- 14.
R.A. Martin, V.M. Da Costa, M. Hack, and J.G. Shaw: High-voltage amorphous silicon thin-film transistors. IEEE Trans. Electron Devices 40 (3), 634–644 (1993).
- 15.
M. Ito, C. Miyazaki, M. Ishizaki, M. Kon, N. Ikeda, T. Okubo, R. Matsubara, K. Hatta, Y. Ugajin, and N. Sekine: Application of amorphous oxide TFT to electrophoretic display. J. Non-Cryst. Solids 354, 2777–2782 (2008).
- 16.
U. Kato, T. Sekitani, M. Takamiya, M. Doi, K. Asaka, T. Sakurai, and T. Someya: Sheet-type braille display by integrating organic field-effect transistors and polymeric actuators. IEEE Trans. Electron Devices 54 (2), 202–209 (2007).
- 17.
W. Zhao, J. Law, D. Waechter, Z. Huang, and J.A. Rowlands: Digital radiology using active matrix readout of amorphous selenium: Detectors with high voltage protection. Med. Phys. 25 (4), 539–549 (1998).
- 18.
Y. Choi, I-D. Kim, H.L. Tuller, and A.I. Akinwande: Low-voltage organic transistors and depletion-load inverters with high-K pyrochlore BZN gate dielectric on polymer substrate. IEEE Trans. Electron Devices 52 (12), 2819–2824 (2005).
- 19.
A. Shih and A.I. Akinwande: Solution-processed high-voltage organic thin film transistor. MRS Adv. 2, 2961–2966 (2017).
- 20.
G.J. Chae, S-H. Jeong, J.H. Baek, B. Walker, C.K. Song, and J.H. Seo: Improved performance in TIPS-pentacene field effect transistors using solvent additives. J. Mater. Chem. C 1, 4216 (2013).
- 21.
S.K. Park, J.E. Anthony, and T.N. Jackson: Solution-processed TIPS-pentacene organic thin-film-transistor circuits. IEEE Electron Device Lett. 28 (10), 877 (2007).
- 22.
M.A. Smith, R.P. Gowers, A. Shih, and A.I. Akinwande: High-voltage organic thin-film transistors on flexible and curved surfaces. IEEE Trans. Electron Devices 62 (12), 4213–4219 (2015).
- 23.
L. Wang, D. Fine, D. Basu, and A. Dodabalapur: Electric-field-dependent charge transport in organic thin-film transistors. J. Appl. Phys. 101 (5), 054515 (2007).
- 24.
J. Wade, F. Steiner, D. Niedzialek, D.T. James, Y. Jung, D-J. Yun, D.D.C. Bradley, J. Nelson, and J-S. Kim: Charge mobility anisotropy of functionalized pentacenes in organic field effect transistors fabricated by solution processing. J. Mater. Chem. C 2, 10110 (2014).
- 25.
H. Kim, Z. Meihui, N. Battaglini, P. Lang, and G. Horowitz: Large enhancement of hole injection in pentacene by modification of gold with conjugated self-assembled monolayers. Org. Electron. 14, 2108–2113 (2013).
- 26.
P. Marmon, N. Battaglini, P. Lang, G. Horowitz, J. Hwang, A. Kahn, C. Amato, and P. Calas: Improving charge injection in organic thin-film transistors with tiol-based self-assembled monolayers. Org. Electron. 9, 419–424 (2008).
- 27.
J-P. Hong, A-Y. Park, S. Lee, J. Kang, N. Shin, and D.Y. Yoon: Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors. Appl. Phys. Lett. 92, 143311 (2008).
- 28.
J.G. Shaw, M.G. Hack, and R.A. Martin: Metastable effects in high-voltage amorphous silicon thin-film transistors. J. Appl. Phys. 69 (4), 2667–2672 (1991).
- 29.
R.A. Martin, P.K. Yap, M. Hack, and H. Tuan: Device design considerations of a novel high voltage amorphous silicon thin film transistor. Proc. Int. Electron Devices Meet. 33, 440–443 (1987).
ACKNOWLEDGMENTS
The authors would like to thank Dr. Melissa Smith and Dr. Annie Wang for their great insight and guidance in the project, Kurt Broderick, Dennis Ward, and Gary Riggott for all their technical assistance and training done at the Microsystems Technology Laboratories, Whitney Rochelle Hess for her help setting up the surface-assembled monolayer experiment and keeping the lab safe, as well as Dr. Charlie Settens and the Center for Materials Science and Engineering for their assistance in XRD measurements.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shih, A., Schell, E. & Akinwande, A.I. Flexible solution-processed high-voltage organic thin film transistor. Journal of Materials Research 33, 149–160 (2018). https://doi.org/10.1557/jmr.2017.428
Received:
Accepted:
Published:
Issue Date: