Microstructure characterization and phase field analysis of dendritic crystal growth of γ-U and BCC-Mo dendrite in U–33 at.% Mo fast reactor fuel

Abstract

U–Mo metallic alloy is considered as an advanced fast reactor and research reactor fuel material. U–33 at.% Mo has a higher melting point than that of pure uranium metal. This provides a higher safety margin against fuel melting and diminishes fuel and clad interaction. The metallic fuels are fabricated through a melting-casting route, and the cast microstructure of U–33 at.% Mo has been characterized using optical microscope, scanning electron microscopy—energy dispersive spectroscopy, and Electron back scattered diffraction. These microstructures show dendrites of two different morphologies: (i) the γ-(U) dendrite with secondary branches and (ii) the equiaxed (Mo) dendrite without secondary branches and surrounded by a peritectic reaction product. In this article, for the first time, a phase field model has been developed for U–Mo alloys to understand the morphological evolution and the associated microsegregation of γ-(U) dendrites in the U–33 at.% Mo alloy. The evolution of the concentration and temperature field with the time and the effect of undercooling on the growth velocity of γ-(U) and (Mo) dendrites has been studied.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    M.K. Meyer, J. Gan, J.F. Jue, D.D. Keisar, E. Perez, A. Robinson, D.M. Wachs, N. Woolstenhulme, G.L. Hofman, and Y.S. Kim: Irradiation performance of U–Mo monolithic fuel. Nucl. Eng. Technol. 46 (2), 169 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    R.D. Mariani, D.L. Porter, V.S. Blackwood, Z.S. Jones, D.L. Olson, B. Mishra, J.R. Kennedy, and S.L. Hayes: International Conference on Fast Reactors and Related Fuel Cyles: Safe Technologies and Sustainable Scenarios (FR13), Paris, France, 4–7 March (International Atomic Energy Agency, Vienna, 2013). IAEA-CN–199/366; ISSN 0074–1884.

    Google Scholar 

  3. 3.

    S. Chakraborty, G. Choudhuri, J. Banerjee, R. Agarwal, K.B. Khan, and A. Kumar: Micro-structural study and rietveld analysis of fast reactor fuels: U–Mo fuels. J. Nucl. Mater. 467, 618 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Y.I. Chang: Technical rationale for metal fuel in fast reactors. Nucl. Eng. Technol. 39 (3), 161 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    R.D. Mariani, D.L. Porter, S.L. Hayes, and J.R. Kennedy: Metallic fuels: The EBR-II legacy and recent advances. Process Chem. 7, 513–520 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    A. Landa, P. Soderlind, B. Grabowski, P.E.A. Turchi, A.V. Ruban, and L. Vitos: Ab Initio Study of Advanced Metallic Nuclear Fuels for Fast Breeder Reactors, MRS Spring Meeting, San Francisco, CA, USA, April 9–13 (2012); published in the MRS Proceedings on “Actinides—Basic Science, Applications, and Technology”, 14 pages (LLNL-CONF-552336).

  7. 7.

    X. Zhang, Y.F. Cui, G.L. Xu, W.J. Zhu, H.S. Liu, B.Y. Yin, and Z.P. Jin: Thermodynamic assessment of the U–Mo–Al system. J. Nucl. Mater. 402, 15 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    T. Velikanova, A. Bodar, L. Artyukh, O. Bilous, S. Firstov, and D. Miracle: Titanium-boride composites: Influence of alloying on constitution and properties of titanium–boride eutectic alloys. In Metallic Materials with High Structural Efficiency, O.N. Senkov, D.B. Miracle, and S.A. Fristov, eds. (Kluwer Academic Publishers, Dordrecht, the Netherlands 2004); p. 260.

    Google Scholar 

  9. 9.

    P. Schaffnit, C. Stallybrass, J. Konrad, F. Stein, and M. Weinberg: A Scheil–Gulliver model dedicated to the solidification of steel. Calphad 48, 184 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    E.J. Lavernia and T.S. Srivatsan: The rapid solidification processing of materials: Science, principles, technology, advances, and applications. J. Mater. Sci. 45, 287 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    M. Schwarz, C.B. Arnold, M.J. Aziz, and D.M. Herlach: Dendritic growth velocity and diffusive speed in solidification undercooled dilute Ni–Zr melts. Mater. Sci. Eng., A 226–228, 420 (1997).

    Article  Google Scholar 

  12. 12.

    G.B. McFadden, A.A. Wheeler, R.J. Braun, S.R. Coriell, and R.F. Sekerka: Phase-field models for anisotropic interfaces. Phys. Rev. E 48 (3), 2016 (1993).

    CAS  Article  Google Scholar 

  13. 13.

    A.A. Wheeler, B.T. Murry, and R.J. Schaefer: Computation of dendrites using a phase field model. Phys. D 66, 243 (1993).

    CAS  Article  Google Scholar 

  14. 14.

    A.A. Wheeler, W.J. Boettinger, and G.B. McFaden: Phase-field model of solute trapping during solidification. Phys. Rev. E 47 (3), 1893 (1993).

    CAS  Article  Google Scholar 

  15. 15.

    S.L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murry, S.R. Coriell, R.J. Braun, and G.B. McFaden: Thermodynamically-consistent phase field models for solidification. Phys. D 69, 189 (1993).

    CAS  Article  Google Scholar 

  16. 16.

    W.J. Boettinger, A.A. Wheeler, B.T. Murry, and G.B. McFadden: Prediction of solute trapping at high solidification rates using a diffuse interface phase-field theory of alloy solidification. Mater. Sci. Eng., A 178, 217 (1994).

    CAS  Article  Google Scholar 

  17. 17.

    W.J. Boettinger and J.A. Warren: The phase field method: Simulation of alloy dendritic solidification during recalescence. Metall. Mater. Trans. A 27, 657 (1996).

    Article  Google Scholar 

  18. 18.

    A.T. Dinsdale: SGTE data for pure elements. Calphad 15, 317 (1991).

    CAS  Article  Google Scholar 

  19. 19.

    Thermophysical Properties of Materials for Nuclear Engineering: A tutorial and collection of data, Chapter: Metallic fuel, Uranium, P.L. Kirikov, ed. (International Atomic Energy Agency, Vienna, 2006); p. 15.

    Google Scholar 

  20. 20.

    Determining the thermophysical properties of molybdenum, by NETZSCH-Geratebau GmbH, 26th June 2013, on internet site, Available at: www.azom.com/article.aspx?ArticleID=9384 (accessed November 12, 2016).

  21. 21.

    Chemical engineering division research highlights: May 1962-April 1963, ANL-6766, Research reports, 38.

  22. 22.

    S.J. Rothman: Diffusion in Uranium, Its Alloys and Compounds, 1961, ANL-5700, part C.

  23. 23.

    V. Palinov, A.I. Nakonechnikov, and V.N. Bykov: Diffusion of uranium in molybdenum, niobium, zirconium and titanium. At. Energ. 19 (6), 521 (1965).

    Google Scholar 

  24. 24.

    K. Huang, D.D. Keiser, Jr., and Y. Sohn: Interdiffusion intrinsic diffusion, atomic mobility, and vacancy wind effect in c(bcc) uranium–molybdenum alloy. Metall. Mater. Trans. A 44, 738 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    J. Askill and D.H. Tomlin: Self-diffusion in molybdenum. Philos. Mag. 8 (90), 997 (1963).

    CAS  Article  Google Scholar 

  26. 26.

    S. Loginova and H.M. Singer: The phase field technique for modeling multiphase materials. Rep. Prog. Phys. 71, 106501 (2008).

    Article  Google Scholar 

  27. 27.

    J.J. Hoyt, M. Asta, and A. Karma: Atomistic and continuum modeling of dendritic solidification. Mater. Sci. Eng., R 41, 121 (2003).

    Article  Google Scholar 

  28. 28.

    J.J. Hoyt, M. Asta, and A. Karma: Atomistic simulation methods for computing the kinetic coefficient in solid-liquid systems. Interface Sci. 10, 181 (2002).

    Article  Google Scholar 

  29. 29.

    S.R. Coriell and D. Turnbull: Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts. Acta Metall. 30, 2135 (1982).

    CAS  Article  Google Scholar 

  30. 30.

    B. Vinet, L. Magnusson, H. Fredriksson, and P.J. Desre: Correlations between surface and interface energies with respect to crystal nucleation. J. Colloid Interface Sci. 255 (4), 363 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    M.E. Glicksman, J.S. Lowengrub, and S. Li: Non-monotone temperature boundary conditions in dendritic growth. In Modelling of Casting, Welding and Advanced Solidification Processing XI, Available at: www.math.uci.edu/∼lowengrb/RESEARCH/publications/MCWASP_XI_8MEG.pdf (accessed December 3, 2016).

  32. 32.

    M.E. Glicksman: Mechanism of dendritic branching. Metall. Mater. Trans. A 43, 391 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    A.M. Mullis: Deterministic side-branching during thermal dendritic growth. Mater. Sci. Eng. 84, 012071 (2015).

    Google Scholar 

  34. 34.

    W. Mullins and R. Sekerka: Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35, 444 (1964).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sibasis Chakraborty.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Choudhuri, G., Somayajulu, P.S. et al. Microstructure characterization and phase field analysis of dendritic crystal growth of γ-U and BCC-Mo dendrite in U–33 at.% Mo fast reactor fuel. Journal of Materials Research 33, 225–238 (2018). https://doi.org/10.1557/jmr.2017.425

Download citation