Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan

Abstract

Polyurethane-based bioadhesive was synthesized with polyols derived from castor oil (chemically modified and unmodified) and hexamethylene diisocyanate with chitosan addition as a bioactive filler. The objective was to evaluate the effect of type of polyols with the incorporation of low-concentrations of chitosan on the mechanical and biological properties of the polymer to obtain suitable materials in the design of biomaterials. The results showed that increasing physical crosslinking increased the mechanical and adhesive properties. An in vitro cytotoxic test of polyurethanes showed cellular viability. The biocompatibility of the polyurethanes favors the adhesion of L929 cells at 6, 24, and 48 h. The polyurethanes showed bacterial inhibition depending on the polyol and percentage of chitosan. The antibacterial effect of the polyurethanes for Escherichia coli decreased 60–90% after 24 h. The mechanical and adhesive properties together with biological response in this research suggested these polyurethanes as external application tissue bioadhesives.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    B. Ates, S. Koytepe, M.G. Karaaslan, S. Balcioglu, and S. Gulgen: Biodegradable non-aromatic adhesive polyurethanes based on disaccharides for medical applications. Int. J. Adhes. Adhes. 49, 90 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    P.J.M. Bouten, M. Zonjee, J. Bender, S.T.K. Yauw, H. Van Goor, J.C.M. Van Hest, and R. Hoogenboom: The chemistry of tissue adhesive materials. Prog. Polym. Sci. 39, 1375 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    A.K. Patel: Chitosan: Emergence as potent candidate for green adhesive market. Biochem. Eng. J. 102, 74 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    J. Guo, G.B. Kim, D. Shan, J.P. Kim, J. Hu, W. Wang, F.G. Hamad, G. Qian, E.B. Rizk, and J. Yang: Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives. Biomaterials 112, 275 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    S. Khanlari, J. Tang, K.M. Kirkwood, and M. Dubé: Synthesis and properties of a poly(sodium acrylate) bioadhesive nanocomposite. Int. J. Polym. Mater. Polym. Biomater. 65, 881 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    D.S. Marques, J.M.C. Santos, P. Ferreira, T.R. Correia, I.J. Correia, M.H. Gil, and C.M.S.G. Baptista: Photocurable bioadhesive based on lactic acid. Mater. Sci. Eng., C 58, 601 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    O. Jeon, J.E. Samorezov, and E. Alsberg: Single and dual crosslinked oxidized methacrylated alginate/PEG hydrogels for bioadhesive applications. Acta Biomater. 10, 47 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    J.C. Wheat and J.S. Wolf: Advances in bioadhesives, tissue sealants, and hemostatic agents. Urol. Clin. North Am. 36, 265 (2009).

    Article  Google Scholar 

  9. 9.

    M. Mehdizadeh, H. Weng, D. Gyawali, L. Tang, and J. Yang: Biomaterials injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33, 7972 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    J. Guo, W. Wang, J. Hu, D. Xie, E. Gerhard, M. Nisic, D. Shan, G. Qian, S. Zheng, and J. Yang: Biomaterials synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives. Biomaterials 85, 204 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    K.M. Seeni Meera, R. Murali Sankar, J. Paul, S.N. Jaisankar, and A.B. Mandal: The influence of applied silica nanoparticles on a bio-renewable castor oil based polyurethane nanocomposite and its physicochemical properties. Phys. Chem. Chem. Phys. 16, 9276 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    M. Szycher: Szycher’s Handbook of Polyurethanes (CRC Press Inc, Boca Ratón, 2012); ch. 22.

    Google Scholar 

  13. 13.

    P. Alves, P. Ferreira, and M.H. Gil: Biomedical Polyurethane-Based Materials. In Polyurethane: Properties, Structure and Applications, L.I. Cavaco and J.A. Melo, eds. (Nova Science Publishers, New York, 2012), pp. 1–25.

    Google Scholar 

  14. 14.

    A. Usman, K.M. Zia, M. Zuber, S. Tabasum, S. Rehman, and F. Zia: Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int. J. Biol. Macromol. 86, 630 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    G. Kaur, M. Mahajan, and P. Bassi: Derivatized polysaccharides: Preparation, characterization, and application as bioadhesive polymer for drug delivery. Int. J. Polym. Mater. 62, 475 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    T.S. Anirudhan, S.S. Nair, and A.S. Nair: Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydr. Polym. 152, 687 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Y.G. Liu, C.R. Zhou, and Y.A. Sun: A biomimetic strategy for controllable degradation of chitosan scaffolds. J. Mater. Res. 27, 1859 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    L. Maisonneuve, G. Chollet, E. Grau, and H. Cramail: Vegetable oils: A source of polyols for polyurethane materials. Ol., Corps Gras, Lipides 23, D508 (2016).

    Google Scholar 

  19. 19.

    P. Narute and A. Palanisamy: Study of the performance of polyurethane coatings derived from cottonseed oil polyol. J. Coat. Technol. Res. 13, 171 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Uscátegui, F. Arévalo, L. Díaz, M. Cobo, and M. Valero: Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. J. Biomater. Sci., Polym. Ed. 27, 1860 (2016).

    Article  CAS  Google Scholar 

  21. 21.

    A. Shaik, R. Narayan, and K.V.S.N. Raju: Synthesis and properties of siloxane-crosslinked polyurethane-urea/silica hybrid films from castor oil. J. Coat. Technol. Res. 11, 397 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    M.F. Valero and A. Gonzalez: Polyurethane adhesive system from castor oil modified by a transesterification reaction. J. Elastomers Plast. 44, 433 (2012).

    Article  CAS  Google Scholar 

  23. 23.

    M.F. Valero and Y. Ortegón: Polyurethane elastomers-based modified castor oil and poly(e-caprolactone) for surface-coating applications: Synthesis, characterization, and in vitro degradation. J. Elastomers Plast. 47, 360 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    M.F. Valero and L.E. Díaz: Poliuretanos obtenidos a partir de aceite de higuerilla modificado y poli-isocianatos de lisina: Síntesis, propiedades mecánicas y térmicas y degradación in vitro. Quim. Nova 37, 1441 (2014).

    CAS  Google Scholar 

  25. 25.

    F. Arevalo, Y.L. Uscategui, L.E. Diaz, M. Cobo, and M.F. Valero: Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. J. Biomater. Appl. 31, 708 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    S.M. Cakić, I.S. Ristić, M.M. Cincović, N.C. Nikolić, L. Nikolić, and M.J. Cvetinov: Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly(caprolactone) diol. Prog. Org. Coat. 105, 111 (2017).

    Article  CAS  Google Scholar 

  27. 27.

    Á. Conejero-García, H.R. Gimeno, Y.M. Sáez, G. Vilariño-Feltrer, I. Ortuño-Lizarán, and A. Vallés-Lluch: Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). Eur. Polym. J. 87, 406 (2017).

    Article  CAS  Google Scholar 

  28. 28.

    K.M. Zia, M. Zuber, M.J. Saif, M. Jawaid, K. Mahmood, M. Shahid, M.N. Anjum, and M.N. Ahmad: Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: Surface characteristics. Int. J. Biol. Macromol. 62, 670 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    J. Skrobot, L. Zair, M. Ostrowski, and M. Fray: El biomaterials new injectable elastomeric biomaterials for hernia repair and their biocompatibility. Biomaterials 75, 182 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    T. Riaz, A. Ahmad, S. Saleemi, M. Adrees, F. Jamshed, A. Moqeet, and T. Jamil: Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium(VI) removal. Carbohydr. Polym. 153, 582 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    R. Pignatello, G. Impallomeni, V. Pistarà, S. Cupri, A.C.E. Graziano, V. Cardile, and A. Ballistreri: New amphiphilic derivatives of poly(ethylene glycol) (PEG) as surface modifiers of colloidal drug carriers. III. Lipoamino acid conjugates with carboxy- and amino-PEG(5000) polymers. Mater. Sci. Eng., C 46, 470 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    M. Arnal-Pastor, S. Comin-Cebrian, C. Martinez-Ramos, M. Monleon Pradas, and A. Valles-Lluch: Hydrophilic surface modification of acrylate-based biomaterials. J. Biomater. Appl. 30, 1429 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    H. Bakhshi, H. Yeganeh, S. Mehdipour-Ataei, M.A. Shokrgozar, A. Yari, and S.N. Saeedi-Eslami: Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols. Mater. Sci. Eng., C 33, 153 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Z. Hou, H. Zhang, W. Qu, Z. Xu, and Z. Han: Biomedical segmented polyurethanes based on polyethylene glycol, poly(ε-caprolactone-co-D,L-lactide), and diurethane diisocyanates with uniform hard segment: Synthesis and properties. Int. J. Polym. Mater. Polym. Biomater. 65, 947 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    P. Gentile, D. Bellucci, A. Sola, C. Mattu, V. Cannillo, and G. Ciardelli: Composite scaffolds for controlled drug release: Role of the polyurethane nanoparticles on the physical properties and cell behaviour. J. Mech. Behav. Biomed. Mater. 44, 53 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    A. Pitchaimani, T. Duong, T. Nguyen, and M. Koirala: Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity. Toxicol. In Vitro 43, 29 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    F. Kara, E.A. Aksoy, Z. Yuksekdag, N. Hasirci, and S. Aksoy: Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohydr. Polym. 112, 39 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    M.F. Valero, J.E. Pulido, Á. Ramírez, and Z. Cheng: Sintesis de poliuretanos a partir de polioles obtenidos a partir del aceite de higuerilla modificado por transesterificación con pentaeritritol. Quim. Nova 31, 2076 (2008).

    CAS  Article  Google Scholar 

  39. 39.

    S.M. Cakić, I.S. Ristić, M.M. Cincović, D.T. Stojiljković, C.J. János, M.J. Cvetinov, and J.V. Stamenković: Glycolyzed poly(ethylene terephthalate) waste and castor oil-based polyols for waterborne polyurethane adhesives containing hexamethoxymethyl melamine. Prog. Org. Coat. 78, 357 (2015).

    Article  CAS  Google Scholar 

  40. 40.

    M. Kathalewar, A. Sabnis, and D. D’Mello: Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. Eur. Polym. J. 57, 99 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    M.M. Aung, Z. Yaakob, S. Kamarudin, and L.C. Abdullah: Synthesis and characterization of Jatropha (Jatropha curcas L.) oil-based polyurethane wood adhesive. Ind. Crops Prod. 60, 177 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    P. Ferreira, R. Pereira, J.F.J. Coelho, A.F.M. Silva, and M.H. Gil: Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. Int. J. Biol. Macromol. 40, 144 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    H. Bakhshi, H. Yeganeh, A. Yari, and S.K. Nezhad: Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: Synthesis, characterization, and biological properties. J. Mater. Sci. 49, 5365 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    M.A. Corcuera, L. Rueda, B. Fernandez d’Arlas, A. Arbelaiz, C. Marieta, I. Mondragon, and A. Eceiza: Microstructure and properties of polyurethanes derived from castor oil. Polym. Degrad. Stab. 95, 2175 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    H. Moussout, H. Ahlafi, M. Aazza, and M. Bourakhouadar: Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym. Degrad. Stab. 130, 1 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    M.A. Gámiz-González, D.M. Correia, S. Lanceros-Mendez, V. Sencadas, J.L. Gómez Ribelles, and A. Vidaurre: Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydr. Polym. 167, 52 (2017).

    Article  CAS  Google Scholar 

  47. 47.

    M.F. Valero, J.E. Pulido, Á. Ramírez, and Z. Cheng: Determinación de la densidad de entrecruzamiento de poliuretanos obtenidos a partir de aceite de ricino modificado por transesterificación. Polímeros 19, 14 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    J.S. Temenoff and A.G. Mikos: Biomaterials (Pearson/Prentice Hall, Upper Saddle River, NJ, 2008).

    Google Scholar 

  49. 49.

    D. Depan, P.K.C.V. Surya, B. Girase, and R.D.K. Misra: Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomater. 7, 2163 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    T. Sordel, F. Kermarec-Marcel, S. Garnier-Raveaud, N. Glade, F. Sauter-Starace, C. Pudda, M. Borella, M. Plissonnier, F. Chatelain, F. Bruckert, and N. Picollet-D’hahan: Influence of glass and polymer coatings on CHO cell morphology and adhesion. Biomaterials 28, 1572 (2007).

    CAS  Article  Google Scholar 

  51. 51.

    V. Pehlivanova, V. Krasteva, B. Seifert, K. Lützow, I. Tsoneva, T. Becker, K. Richau, A. Lendlein, and R. Tzoneva: The role of alternating current electric field for cell adhesion on 2D and 3D biomimetic scaffolds based on polymer materials and adhesive proteins. J. Mater. Res. 28, 2180 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Y. Zhu, Z. Dong, U.C. Wejinya, S. Jin, and K. Ye: Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation. J. Biomech. 44, 2356 (2011).

    Article  Google Scholar 

  53. 53.

    N. Liu, X.G. Chen, H.J. Park, C.G. Liu, C.S. Liu, X.H. Meng, and L.J. Yu: Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr. Polym. 64, 60 (2006).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Universidad de La Sabana under grant number ING-176-2016 and by Colciencias under scholarship grant 617-2-2014. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. J.A.G.T. and A.V.L. acknowledge the support of the Spanish Ministry of Economy and Competitiveness (MINECO) through project DPI2015-65401-C3-2-R (including FEDER financial support). Finally, the authors thank the Universitat Politècnica de València for assistance and advice with the equipment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Valero.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uscátegui, Y.L., Arévalo-Alquichire, S.J., Gómez-Tejedor, J.A. et al. Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan. Journal of Materials Research 32, 3699–3711 (2017). https://doi.org/10.1557/jmr.2017.371

Download citation