Dislocation dynamics modeling of precipitation strengthening in Fe–Ni–Al–Cr ferritic superalloys


Two-dimensional dislocation dynamics (DD) simulations are performed to simulate the increase in strength of ferritic superalloys strengthened by ordered β′(B2)–NiAl precipitates. Parametric studies for three precipitate volume fractions (10, 13, and 20%) and various radii (from 1 to 75 nm) predict strengthening via a mixture of precipitate bypassing and shearing by single- and super-dislocations of edge or screw character. DD strength contributions for various precipitate radii (for a 13% volume fraction) are compared to analytical models for ordered precipitate strengthening: good agreement exists in the overaged state, but not in the peak-aged and underaged states for either dislocation configurations. DD strength contributions, converted to hardness values, are compared to experimental hardness values from previously reported literature on a ferritic superalloy [Fe–10Cr–10Ni–6.5Al–3.4Mo–0.25Zr–0.005B (wt%)] aged at various temperatures and times. DD hardness values from the single-edge dislocation simulations accurately predict the experimental peak hardness, but not the under- and over-aged hardness values or trends. By incorporating the effect of secondary NiAl nanoprecipitates formed on cooling and solid solution strengthening of Fe in the primary precipitates, reasonable agreement is achieved in the overaged condition.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    H.K.D.H. Bhadeshia: Design of ferritic creep-resistant steels. ISIJ Int. 41, 626 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    C. Stallybrass and G. Sauthoff: Ferritic Fe-Al-Ni-Cr alloys with coherent precipitates for high-temperature applications. Mater. Sci. Eng. A 387–389, 985 (2004).

    Article  CAS  Google Scholar 

  3. 3.

    C. Stallybrass, A. Schneider, and G. Sauthoff: The strengthening effect of (Ni,Fe)Al precipitates on the mechanical properties at high temperatures of ferritic Fe–Al–Ni–Cr alloys. Intermetallics 13, 1263 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    H.A. Calderon, M.E. Fine, and J.R. Weertman: Coarsening and morphology of β′ particles in Fe–Ni–AI–Mo ferritic alloys. Analysis 19, (1988).

  5. 5.

    S.M. Zhu, S.C. Tjong, and J.K.L. Lai: Creep behavior of a β′(NiAl) precipitation strengthened ferritic Fe–Cr–Ni–Al alloy. Acta Mater. 46, 2969 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    P. Caron and T. Khan: Improvement of creep strength in a nickel-base single-crystal superalloy by heat treatment. Mater. Sci. Eng. 61, 173 (1983).

    CAS  Article  Google Scholar 

  7. 7.

    T. Sugui, Z. Huihua, Z. Jinghua, Y. Hongcai, and X. Yongbo: Formation and role of dislocation networks during high temperature creep of a single crystal nickel–base superalloy. Mater. Sci. Eng., A. 279, 160 (2000).

    Article  Google Scholar 

  8. 8.

    R.R. Keller, H.J. Maier, and H. Mughrabi: Characterization of interfacial dislocation networks in a creep-deformed nickel-based superalloy. Scr. Metall. 28, 23 (1993).

    CAS  Article  Google Scholar 

  9. 9.

    Z.K. Teng, G. Ghosh, M.K. Miller, S. Huang, B. Clausen, D.W. Brown, and P.K. Liaw: Neutron-diffraction study and modeling of the lattice parameters of a NiAl-precipitate-strengthened Fe-based alloy. Acta Mater. 60 (13–14), 5362 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    G. Sauthoff: Multiphase intermetallic alloys for structural applications. Intermetallics 8, 1101 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    E. Nembach: Particle Strengthening of Metals and Alloys, 1st ed. (Wiley-VCH, New York, NY, 1996).

    Google Scholar 

  12. 12.

    E. Nembach and G. Neite: Precipitation hardening of superalloys by ordered γ′-particles. Prog. Mater. Sci. 29, 177 (1985).

    CAS  Article  Google Scholar 

  13. 13.

    N. Naveen Kumar, R. Tewari, P.V. Durgaprasad, B.K. Dutta, and G.K. Dey: Active slip systems in bcc iron during nanoindentation: A molecular dynamics study. Comput. Mater. Sci. 77, 260 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    A. Ball and R.E. Smallman: The operative slip system and general plasticity of NiAl-II. Acta Metall. 14, 1517 (1966).

    CAS  Article  Google Scholar 

  15. 15.

    M.H. Yoo, T. Takasugi, S. Hanada, and O. Izumi: Slip modes in B2-type intermetallic alloys. Mater. Trans. 31, 435 (1990).

    CAS  Article  Google Scholar 

  16. 16.

    A.J. Ardell: Precipitaion hardening. Metall. Trans. A 16, 2131 (1985).

    Article  Google Scholar 

  17. 17.

    L.M. Brown and R.K. Ham: Strengthening Methods in Crystals (New York, NY, Elsevier Publishing Company, 1971).

    Google Scholar 

  18. 18.

    V. Mohles: Simulation of dislocation glide in precipitation hardened materials. Comput. Mater. Sci. 16, 144 (1999).

    CAS  Article  Google Scholar 

  19. 19.

    E. Nembach, J. Pesicka, V. Mohles, D. Baither, V. Vovk, and T. Krol: The effects of a second aging treatment on the yield strength of γ′-hardened NIMONIC PE16-polycrystals having γ′-precipitate free zones. Acta Mater. 53, 2485 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    V. Mohles: Computer simulations of particle strengthening: The effects of dislocation dissociation on lattice mismatch strengthening. Mater. Sci. Eng., A 321, 206 (2001).

    Article  Google Scholar 

  21. 21.

    V. Mohles: Simulations of dislocation glide in overaged precipitation-hardened crystals. Philos. Mag. A 81, 971 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    V. Mohles: Computer simulations of the glide of dissociated dislocations in lattice mismatch strengthened materials. Mater. Sci. Eng., A 324, 190 (2002).

    Article  Google Scholar 

  23. 23.

    V. Mohles and B. Fruhstorfer: Computer simulations of Orowan process controlled dislocation glide in particle arrangements of various randomness. Acta Mater. 50, 2503 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    V. Mohles: Dislocation Dynamics Simulations of Particle Strengthening. In Contin. Scale Simul. Eng. Mater. Fundam.–Microstruct.–Process Appl., edited by D. Raabe, F. Roters, F. Barlat, and L. Chen (Wiley-VCH, New York, NY, 2004), pp. 368–388.

    Google Scholar 

  25. 25.

    A.A. Benzerga, Y. Bréchet, A. Needleman, and E. Van der Giessen: Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics. Modell. Simul. Mater. Sci. Eng. 12, 557 (2004).

    Article  Google Scholar 

  26. 26.

    A. Ilker Topuz: Enabling microstructural changes of FCC/BCC alloys in 2D dislocation dynamics. Mater. Sci. Eng., A 627, 381 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    N. Ahmed and A. Hartmaier: A two-dimensional dislocation dynamics model of the plastic deformation of polycrystalline metals. J. Mech. Phys. Solids 58, 2054 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    S. Liang, M. Huang, and Z. Li: Discrete dislocation modeling on interaction between type-I blunt crack and cylindrical void in single crystals. Int. J. Solids Struct. 56–57, 209 (2015).

    Article  Google Scholar 

  29. 29.

    H. Yang, Z. Li, and M. Huang: Modeling dislocation cutting the precipitate in nickel-based single crystal superalloy via the discrete dislocation dynamics with SISF dissociation scheme. Comput. Mater. Sci. 75, 52 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    A. Vattré, B. Devincre, and A. Roos: Dislocation dynamics simulations of precipitation hardening in Ni-based superalloys with high γ′ volume fraction. Intermetallics 17, 988 (2009).

    Article  CAS  Google Scholar 

  31. 31.

    A. Vattré, B. Devincre, and A. Roos: Orientation dependence of plastic deformation in nickel-based single crystal superalloys: Discrete–continuous model simulations. Acta Mater. 58, 1938 (2010).

    Article  CAS  Google Scholar 

  32. 32.

    K. Yashiro, F. Kurose, Y. Nakashima, K. Kubo, Y. Tomita, and H.M. Zbib: Discrete dislocation dynamics simulation of cutting of γ′ precipitate and interfacial dislocation network in Ni-based superalloys. Int. J. Plast. 22, 713 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    S.M. Hafez Haghighat, G. Eggeler, and D. Raabe: Effect of climb on dislocation mechanisms and creep rates in γ′-strengthened Ni base superalloy single crystals: A discrete dislocation dynamics study. Acta Mater. 61, 3709 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    B. Liu, D. Raabe, F. Roters, and A. Arsenlis: Interfacial dislocation motion and interactions in single-crystal superalloys. Acta Mater. 79, 216 (2014).

    Article  CAS  Google Scholar 

  35. 35.

    W. Cai, A. Arsenlis, C. Weinberger, and V. Bulatov: A non-singular continuum theory of dislocations. J. Mech. Phys. Solids 54, 561 (2006).

    CAS  Article  Google Scholar 

  36. 36.

    A. Prakash, J. Guénolé, J. Wang, J. Müller, E. Spiecker, M.J. Mills, I. Povstugar, P. Choi, D. Raabe, and E. Bitzek: Atom probe informed simulations of dislocation–precipitate interactions reveal the importance of local interface curvature. Acta Mater. 92, 33 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    V. Mohles: Superposition of dispersion strengthening and size-mismatch strengthening: Computer simulations. Philos. Mag. Lett. 83, 9 (2003).

    CAS  Article  Google Scholar 

  38. 38.

    V. Mohles: In Contin. Scale Simul. Eng. Mater. Fundam.–Microstruct.–Process Appl., D. Raabe, F. Roters, F. Barlat, and L. Chen, eds. (Wiley-VCH, New York, NY, 2004), pp. 368–388.

    Google Scholar 

  39. 39.

    M.E. Krug, Z. Mao, D.N. Seidman, and D.C. Dunand: Comparison between dislocation dynamics model predictions and experiments in precipitation-strengthened Al–Li–Sc alloys. Acta Mater. 79, 382 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    P. Bocchini: Dislocation Dynamics Simulations of Precipitation-Strengthened Ni- and Co-based Superalloys. Unpublished Manuscript. (n.d.).

  41. 41.

    P. Bocchini: Microstructure and Mechanical Properties in γ (f.c.c.) + γ′(L12) Precipitation-Strengthened Cobalt-Based Superalloys. PhD Thesis, Department of Materials Science and Engineering, Northwestern University, 2015.

  42. 42.

    U. Lagerpusch, V. Mohles, D. Baither, B. Anczykowski, and E. Nembach: Double strengthening of copper by dissolved gold-atoms and by incoherent SiO2-particls: How do the tow strengthening contributions superimpose? Acta Mater. 48, 3647 (2000).

    CAS  Article  Google Scholar 

  43. 43.

    U. Lagerpusch, V. Mohles, and E. Nembach: On the additivity of solid solution and dispersion strengthening. Mater. Sci. Eng., A 319–321, 176 (2001).

    Article  Google Scholar 

  44. 44.

    M. Krug: Microstructural Evolution and Mechanical Properties in Al-Sc Alloys With Li and Rare Earth Additions PhD thesis, Department of Materials Science and Engineering, Northwestern University, 2011.

  45. 45.

    Z.K. Teng, M.K. Miller, G. Ghosh, C.T. Liu, S. Huang, K.F. Russell, M.E. Fine, and P.K. Liaw: Characterization of nanoscale NiAl-type precipitates in a ferritic steel by electron microscopy and atom probe tomography. Scr. Mater. 63, 61 (2010).

    CAS  Article  Google Scholar 

  46. 46.

    Z.K. Teng, F. Zhang, M.K. Miller, C.T. Liu, S. Huang, Y.T. Chou, R.H. Tien, Y.A. Chang, and P.K. Liaw: New NiAl-strengthened ferritic steels with balanced creep resistance and ductility designed by coupling thermodynamic calculations with focused experiments. Intermetallics 29, 110 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    Z. Sun, G. Song, J. Ilavsky, G. Ghosh, and P.K. Liaw: Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy. Sci. Rep. 5, 16081 (2015).

    CAS  Article  Google Scholar 

  48. 48.

    Z. Sun, G. Song, J. Ilavsky, and P.K. Liaw: Duplex precipitates and their effects on the room-temperature fracture behaviour of a NiAl-strengthened ferritic alloy. Mater. Res. Lett. 3, 128 (2015).

    CAS  Article  Google Scholar 

  49. 49.

    V. Mohles and E. Nembach: The peak- and over-aged states of particle strengthened materials: Computer simulations. Acta Mater. 49, 2405 (2001).

    CAS  Article  Google Scholar 

  50. 50.

    I.M. Lifshitz and V.V. Slyozov: The kinetics of precipitation from supersaturated solid solution. J. Phys. Chem. Solids 19, 35 (1961).

    Article  Google Scholar 

  51. 51.

    C. Wagner: Theorie der alterung von niederschlagen durch umlosen (Ostwald-reifung). Z. Elektrochem. 65, 581 (1961).

    CAS  Google Scholar 

  52. 52.

    R. Campany, M. Loretto, and R. Smallman: The determination of the 1/2〈111〉{110} antiphase boundary energy of NiAl. J. Microsc. 98, 174 (1972).

    Article  Google Scholar 

  53. 53.

    Z.K. Teng, C.T. Liu, G. Ghosh, P.K. Liaw, and M.E. Fine: Effects of Al on the microstructure and ductility of NiAl-strengthened ferritic steels at room temperature. Intermetallics 18 (8), 1437 (2010).

    CAS  Article  Google Scholar 

  54. 54.

    G. Samsonov: Handbook of the Physicochemical Properties of the Elements: Mechanical Properties of the Elements (1968).

  55. 55.

    W. Rosenhain: The Hardness of Solid Solutions. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 99, 196 (1921).

    CAS  Google Scholar 

  56. 56.

    D. Tabor: The physical meaning of indentation and scratch hardness. Br. J. Appl. Phys. 7, 159 (1956).

    Article  Google Scholar 

  57. 57.

    J.M. Rosenberg and H.R. Piehler: Calculation of the taylor factor and lattice rotations for bcc metals deforming by pencil glide. Metall. Trans. A 2, 257 (1971).

    CAS  Article  Google Scholar 

  58. 58.

    W. Huther and B. Reppich: Interaction of dislocations with coherent, stree-free ordered particles. Z. Metallkd. 69, 628 (1978).

    Google Scholar 

  59. 59.

    D. Raynor and J.M. Silcock: Strengthening mechanisms in γ′ precipitating alloys. Mater. Sci. Technol. 4, 121 (1970).

    CAS  Google Scholar 

  60. 60.

    A. Ardell, V. Munjal, and D. Chelman: Precipitation hardening of Ni–Al alloys containing large volume fractions of gamma prime. Metall. Trans. A 7, 1263 (1976).

    Article  Google Scholar 

  61. 61.

    N.Q. Vo, C.H. Liebscher, M.J.S. Rawlings, M. Asta, and D.C. Dunand: Creep properties and microstructure of a precipitation-strengthened ferritic Fe–Al–Ni–Cr alloy. Acta Mater. 71, 89 (2014).

    CAS  Article  Google Scholar 

  62. 62.

    V. Mohles: The critical resolved shear stress of single crystals with long-range ordered precipitates calculated by dislocation dynamics simulations. Mater. Sci. Eng., A 365, 144 (2004).

    Article  CAS  Google Scholar 

  63. 63.

    Y. Dong, T. Nogaret, and W. Curtin: Scaling of dislocation strengthening by multiple obstacle types. Metall. Mater. Trans. A 41, 1954 (2010).

    Article  CAS  Google Scholar 

  64. 64.

    G. Song, Z. Sun, L. Li, X. Xu, M.J.S. Rawlings, and C.H. Liebscher: Ferritic alloys with extreme creep resistance via coherent hierarchical precipitates. Sci. Rep. 5, 16327 (2015).

    CAS  Article  Google Scholar 

  65. 65.

    C. Genevois: Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds. Acta Mater. 53, 2447 (2005).

    CAS  Article  Google Scholar 

  66. 66.

    I. Khan, M. Starink, and J. Yan: A model for precipitation kinetics and strengthening in Al–Cu–Mg alloys. Mater. Sci. Eng., A 472, 66 (2008).

    Article  CAS  Google Scholar 

  67. 67.

    D. Gilmore and E. Starke: Trace element effects on precipitation processes and mechanical properties in an Al–Cu–Li alloy. Metall. Mater. Trans. A 28, 1399 (1997).

    Article  Google Scholar 

  68. 68.

    E. Nembach: Synergetic effects in the superposition of stregthening mechanisms. Acta Metall. 40, 3325 (1992).

    CAS  Article  Google Scholar 

  69. 69.

    S. Schanzer and E. Nembach: The critical resolved shear stress of gamma prime-strengthened nickel-based supperalloys with volume fractions between 0.07 and 0.47. Acta Metall. 40, 803 (1992).

    Article  Google Scholar 

  70. 70.

    L. Pike, Y. Chang, and C.T. Liu: Solid-Solution hardening and softening by Fe addition to NiAl. Intermetallics 5, 601 (1997).

    CAS  Article  Google Scholar 

Download references


This research was supported financially by the US Department of Energy (DOE), Office of Fossil Energy, under Grant DE-FE0005868 (Dr. V. Cedro, monitor).

Author information



Corresponding author

Correspondence to Michael J. S. Rawlings.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rawlings, M.J.S., Dunand, D.C. Dislocation dynamics modeling of precipitation strengthening in Fe–Ni–Al–Cr ferritic superalloys. Journal of Materials Research 32, 4241–4253 (2017). https://doi.org/10.1557/jmr.2017.334

Download citation