Hetero-epitaxy of high quality germanium film on silicon substrate for optoelectronic integrated circuit applications

Abstract

Integration of photonic devices on silicon (Si) substrates is a key method in enabling large scale manufacturing of Si-based photonic-electronic circuits for next generation systems with high performance, small form factor, low power consumption, and low cost. Germanium (Ge) is a promising material due to its pseudo-direct bandgap and its compatibility with Si-CMOS processing. In this article, we present our recent progress on achieving high quality germanium-on-silicon (Ge/Si) materials. Subsequently, the performance of various functional devices such as photodetectors, lasers, waveguides, and sensors that are fabricated on the Ge/Si platform are discussed. Some possible future works such as the incorporation of tin (Sn) into Ge will be proposed. Finally, some applications based on a fully monolithic integrated photonic-electronic chip on an Si platform will be highlighted at the end of this article.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1.

    S.M. Sze and M.K. Lee: Semiconductor Devices: Physics and Technology, 3rd ed. (Wiley, New York, USA, 2012).

    Google Scholar 

  2. 2.

    Semiconductor Industry Association (2013). Available at: http://www.semiconductors.org (accessed 5 February 2017).

  3. 3.

    World Semiconductor Trade Statistic (2013). Available at: http://www.wsts.org (accessed 5 February 2017).

  4. 4.

    International Technology Roadmap for Semiconductors (2012). Available at: http://www.itrs.net.

  5. 5.

    Intel Corporation (2013). Available at: http://www.intel.com/content/www/us/en/history/museum-transistors-to-transformations-brochure.html (accessed 5 February 2017).

  6. 6.

    G.E. Moore: Cramming more components onto integrated circuits. Electronics 38 (8), 114 (1965).

    Google Scholar 

  7. 7.

    P. Greiling: The historical development of GaAs FET digital IC technology. IEEE Trans. Microwave Theory Tech. 32 (9), 1144 (1984).

    Article  Google Scholar 

  8. 8.

    M. Hirayama, M. Togashi, N. Kato, M. Suzuki, Y. Matsuoka, and Y. Kawasaki: A GaAs 16-kbit static RAM using dislocation-free crystal. IEEE Trans. Electron Devices 33 (1), 104 (1986).

    Article  Google Scholar 

  9. 9.

    Y. Taur and T.H. Ning: Fundamentals of Modern VLSI Devices, 2nd ed. (Cambridge University Press, Cambridge, England, 2013).

    Google Scholar 

  10. 10.

    Cisco Visual Networking Index: Forecast and Methodology (2013). Available at: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf (accessed 5 February 2017).

  11. 11.

    B. Lannoo: Overview of ICT energy consumption. Available at: http://www.internet-science.eu/sites/eins/files/biblio/EINS_D8%201_final.pdf (accessed 5 February 2017).

  12. 12.

    T.E. Klein: Sustainable ICT Networks: The GreenTouch Vision. Green Research at Alcatel-Lucent. Available at: https://s3-us-west-2.amazonaws.com/belllabs-microsite-greentouch/uploads/documents/3%20Thierry%20Klein_EU%20SEW%20-%20The%20GT%20Vision%20-%20v2.pdf (accessed 5 February 2017).

  13. 13.

    L.C. Kimerling: Microphotonics: The Next Platform for the Information Age. Available at: http://ilp.mit.edu/media/conferences/2011-japan/Kimerling.pdf (accessed 5 February 2017).

  14. 14.

    R.A. Soref: The past, present and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12 (6), 1678 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    R. Kirchain and L.C. Kimerling: A roadmap for nanophotonics. Nat. Photonics 1, 303 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    L. Tsybeskov, D.J. Lockwood, and M. Ichikawa: Silicon photonics: CMOS going optical. Proc. IEEE 97 (7), 1161 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    M.W. Geis, S.J. Spector, M.E. Grein, J.U. Yoon, D.M. Lennon, and T.M. Lyszczarz: Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response. Opt. Express 17 (7), 5193 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    B. Souhan, R.R. Grote, J.B. Driscoll, M. Lu, A. Stein, H. Bakhru, and R.M. Osgood: Metal-semiconductor-metal ion-implanted Si waveguide photodetectors for C-band operation. Opt. Express 22 (8), 9150 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftciogulu, Y. Chetrit, N. Izhaky, and M. Paniccia: High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15 (2), 660 (2007).

    Article  Google Scholar 

  20. 20.

    W.M.J. Green, M.J. Rooks, L. Sekaric, and Y.A. Vlasov: Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt. Express 15 (25), 17106 (2007).

    Article  Google Scholar 

  21. 21.

    K.Y. Cheng, R. Anthony, U.R. Kortshagen, and R.J. Holmes: High-efficiency silicon nanocrystal light-emitting devices. Nano Lett. 11 (5), 1952 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    H. Zimmermann: Integrated Silicon Optoelectronics, 2nd ed. (Springer-Verlag, Berlin, Germany, 2000).

    Google Scholar 

  23. 23.

    G.T. Reed: Silicon Photonics: The State of the Art, 1st ed. (Wiley, New York, USA, 2008).

    Google Scholar 

  24. 24.

    L. Pavesi and G. Guillot: Optical Interconnects: The Silicon Approach, 1st ed. (Springer-Verlag, Berlin, Germany, 2006).

    Google Scholar 

  25. 25.

    D.A.B. Miller: Device requirements for optical interconnects to silicon chips. Proc. IEEE 97 (7), 1166 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    L. Vivien and L. Pavesi: Handbook of Silicon Photonics, 1st ed. (Taylor and Francis, London, England, 2013).

    Google Scholar 

  27. 27.

    Y. Arakawa, T. Nakamura, and Y. Urino: Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 51 (3), 72 (2013).

    Article  Google Scholar 

  28. 28.

    A. Lee, H. Liu, and A. Seeds: Semiconductor III–V lasers monolithically grown on Si substrates. Semicond. Sci. Technol. 28 (1), 015207 (2013).

    Article  CAS  Google Scholar 

  29. 29.

    C. Gunn: CMOS photonics for high-speed interconnects. IEEE Micro 26 (2), 58 (2006).

    Article  Google Scholar 

  30. 30.

    K.H. Lee, S. Bao, E. Fitzgerald, and C.S. Tan: Integration of III–V materials and Si-CMOS through double layer transfer process. Jpn. J. Appl. Phys. 54 (3), 030209 (2015).

    Article  CAS  Google Scholar 

  31. 31.

    K.H. Lee, S. Bao, L. Zhang, D. Kohen, E. Fitzgerald, and C.S. Tan: Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process. Appl. Phys. Express 9 (8), 086501 (2016).

    Article  CAS  Google Scholar 

  32. 32.

    K. Wada and L.C. Kimerling: Photonics and Electronics with Germanium, 1st ed. (Wiley, Verlag GmbH & Co. KGaA, Germany, 2015).

    Google Scholar 

  33. 33.

    R. Newman: Optical studies of injected carriers. II. Recombination radiation in germanium. Phys. Rev. 91 (6), 1313 (1953).

    CAS  Article  Google Scholar 

  34. 34.

    J.R. Hayne: New radiation resulting from recombination of holes and electrons in germanium. Phys. Rev. 98 (6), 1866 (1955).

    Article  Google Scholar 

  35. 35.

    Q. Zhang, J. Huang, N. Wu, G. Chen, M. Hong, L.K. Bera, and C. Zhu: Drive-current enhancement in Ge n-channel MOSFET using laser annealing for source/drain activation. IEEE Electron Device Lett. 27 (9), 728 (2006).

    Article  CAS  Google Scholar 

  36. 36.

    J. Feng, R. Woo, S. Chen, Y. Liu, P.B. Griffin, and J.D. Plummer: P-Channel germanium FinFET based on rapid melt growth. IEEE Electron Device Lett. 28 (7), 637 (2007).

    CAS  Article  Google Scholar 

  37. 37.

    J. Feng, G. Thareja, M. Kobayashi, S. Chen, A. Poon, Y. Bai, P.B. Griffin, S.S. Wong, Y. Nishi, and J.D. Plummer: High-performance gate-all-around GeOI p-MOSFETs fabricated by rapid melt growth using plasma nitridation and ALD Al2O3 gate dielectric and self-aligned NiGe contacts. IEEE Electron Device Lett. 29 (7), 805 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    O. Madelung: Physics of Group IV Elements and III–V Compounds, 1st ed. (Springer-Verlag, Berlin, Germany, 1982).

    Google Scholar 

  39. 39.

    J. Liu, X. Sun, L.C. Kimerling, and J. Michel: Direct-gap optical gain of Ge on Si at room temperature. Opt. Lett. 34 (11), 1738 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    R.E. Camacho-Aguilera, Y. Cai, N. Patel, J.T. Bessette, M. Romagnoli, L.C. Kimerling, and J. Michel: An electrically pumped germanium laser. Opt. Express 20 (10), 11316 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    R. Koerner, M. Oehme, M. Gollhofer, M. Schmid, K. Kostecki, S. Bechler, D. Widmann, E. Kasper, and J. Schulze: Electrically pumped lasing from Ge Fabry–Perot resonators on Si. Opt. Express 23 (11), 14815 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    S. Komiyama, N. Lizuka, and Y. Akasaka: Evidence for induced far-infrared emission from p-Ge in crossed electric and magnetic fields. Appl. Phys. Lett. 47 (9), 958 (2016).

    Article  Google Scholar 

  43. 43.

    H. Shang, H. Okorn-schimdt, J. Ott, P. Kozlowski, S. Steen, E.C. Jones, H.S.P. Wong, and W. Hanesch: Electrical characterization of germanium p-channel MOSFETs. IEEE Electron. Dev. Lett. 24 (4), 242 (2003).

    CAS  Article  Google Scholar 

  44. 44.

    S. Fathpour: Emerging heterogeneous integrated photonic platforms on silicon. Nanophotonics 4 (1), 143 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    D. Kohen, S. Bao, K.H. Lee, K.E.K. Lee, C.S. Tan, S.F. Yoon, and E.A. Fitzgerald: The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200 mm GaAs virtual substrate. J. Cryst. Growth 421, 58 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    D. Kohen, X.S. Nguyen, S. Yadav, A. Kumar, R.I. Made, C. Heidelberger, X. Gong, K.H. Lee, K.E.K. Lee, Y.C. Yeo, S.F. Yoon, and E.A. Fitzgerald: Heteroepitaxial growth of In0.30Ga0.70As high-electron mobility transistor on 200 mm silicon substrate using metamorphic graded buffer. AIP Adv. 6 (8), 085106 (2016).

    Article  CAS  Google Scholar 

  47. 47.

    E.A. Fitzgerald, Y.H. Xie, M.L. Green, D. Brasen, A.R. Kortan, J. Michel, Y.J. Mi, and B.E. Weir: Totally relaxed GexSi1−x layers with low threading dislocation densities grown on Si substrates. Appl. Phys. Lett. 59 (7), 811 (2010).

    Article  Google Scholar 

  48. 48.

    V.A. Shah, A. Dobbie, M. Myronov, and D.R. Leadley: Reverse graded SiGe/Ge/Si buffers for high-composition virtual substrates. Appl. Phys. Lett. 107 (6), 064304 (2010).

    Google Scholar 

  49. 49.

    M.T. Curie, S.B. Samvedam, T.A. Langdo, C.W. Leitz, and E.A. Fitzgerald: Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 72, 1718 (1998).

    Article  Google Scholar 

  50. 50.

    J.L. Liu, S. Tong, Y.H. Luo, and K.L. Wang: High-quality Ge films on Si substrates using Sb surfactant-mediated graded SiGe buffers. Appl. Phys. Lett. 79 (21), 3431 (2001).

    CAS  Article  Google Scholar 

  51. 51.

    S. Luryi, A. Kastalsky, and J.C. Bean: Infrared detector on a silicon chip. IEEE Trans. Electron Devices 31 (9), 1135 (1984).

    Article  Google Scholar 

  52. 52.

    M.T. Curie, S.B. Samvedam, T.A. Langdo, C.W. Leitz, and E.A. Fitzgerald: Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 72 (14), 1718 (1998).

    Article  Google Scholar 

  53. 53.

    J.M. Hartmann, L. Sanchez, W. Van Den Daele, A. Abbadie, L. Baud, R. Truche, E. Augendre, L. Clavelier, N. Cherkashin, M. Hytch, and S. Cristoloveanu: Fabrication, structural and electrical properties of compressively strained Ge-on-insulator substrates. Semicond. Sci. Technol. 25 (7), 075010 (2010).

    Article  CAS  Google Scholar 

  54. 54.

    N. Jain: Heterogeneous integration of III–V multijunction solar cells on Si substrate: Cell design & modeling, epitaxial growth & fabrication. Doctoral thesis, Virginia Polytechnic Institute and State University, USA, 2015.

    Google Scholar 

  55. 55.

    J. Nakatsuru, H. Date, S. Mashiro, and M. Ikemoto: Growth of high quality Ge epitaxial layer on Si (100) substrate using ultra thin Si0.5Ge0.5 buffer. MRS Online Proc. Libr. 891, EE07–24 (2005).

    Article  Google Scholar 

  56. 56.

    T.A. Langdo, C.W. Leitz, M.T. Curie, and E.A. Fitzgerald: High quality Ge on Si by epitaxial necking. Appl. Phys. Lett. 76 (25), 3700 (2000).

    CAS  Article  Google Scholar 

  57. 57.

    J. Bai, J.S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld: Study of the defect elimination mechanisms in aspect ratio trapping Ge growth. Appl. Phys. Lett. 90 (10), 101902 (2007).

    Article  CAS  Google Scholar 

  58. 58.

    S. Ren, Y. Rong, T.I. Kamins, J.S. Harris, and D.A.B. Miller: Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition. Appl. Phys. Lett. 98 (15), 151108 (2011).

    Article  CAS  Google Scholar 

  59. 59.

    J.G. Fiorenza, J.S. Park, J.M. Hydrick, J. Li, J.Z. Li, M. Curtin, M. Carroll, and A. Lochtefeld: Aspect ratio trapping: A unique technology for integrating Ge and III–Vs with silicon CMOS. ECS Trans. 33 (6), 963 (2010).

    CAS  Article  Google Scholar 

  60. 60.

    L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L.D. Gaspare, E. Palange, and F. Evangelisti: Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si. Appl. Phys. Lett. 72 (24), 3175 (1998).

    CAS  Article  Google Scholar 

  61. 61.

    J.M. Hartmann, A. Abbadie, A.M. Papon, P. Holliger, G. Rolland, T. Billon, J.M. Fedeli, M. Rouviere, L. Vivien, and S. Laval: Reduced pressure–chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection. J. Appl. Phys. 95 (10), 5905 (2004).

    CAS  Article  Google Scholar 

  62. 62.

    H.C. Luan, D.R. Lim, K.K. Lee, K.M. Cheng, J.G. Sandland, K. Wada, and L.C. Kimerling: High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett. 75 (19), 2909 (1999).

    CAS  Article  Google Scholar 

  63. 63.

    A. Nayfeh, C.O. Chui, and K.C. Saraswat: Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality. Appl. Phys. Lett. 85 (14), 2815 (2004).

    CAS  Article  Google Scholar 

  64. 64.

    Y.H. Tan and C.S. Tan: Growth and characterization of germanium epitaxial film on silicon (001) using reduced pressure chemical vapor deposition. Thin Solid Films 520 (7), 2711 (2012).

    CAS  Article  Google Scholar 

  65. 65.

    K.H. Lee, Y.H. Tan, A. Jandl, E.A. Fitzgerald, and C.S. Tan: Comparative studies of the growth and characterization of germanium epitaxial film on silicon (001) with 0° and 6° offcut. J. Electron. Mater. 42 (6), 1133 (2013).

    Article  CAS  Google Scholar 

  66. 66.

    K.H. Lee, A. Jandl, Y.H. Tan, E.A. Fitzgerald, and C.S. Tan: Growth and characterization of germanium epitaxial film on silicon (001) with germane precursor in metal organic chemical vapour deposition (MOCVD) chamber. AIP Adv. 3 (9), 092123 (2013).

    Article  CAS  Google Scholar 

  67. 67.

    Y. Masafumi, A. Chikara, and I. Yoshio: Numerical analysis for high-efficiency GaAs solar cells fabricated on Si substrates. J. Appl. Phys. 66 (2), 915 (1989).

    Article  Google Scholar 

  68. 68.

    Y. Masafumi and A. Chikara: Efficiency calculations of thin-film GaAs solar cells on Si substrates. J. Appl. Phys. 58 (9), 3601 (1985).

    Article  Google Scholar 

  69. 69.

    R. Ginige, B. Corbett, M. Modreanu, C. Barrett, J. Hilgarth, G. Isella, D. Chrastina, and H. von Känel: Characterization of Ge-on-Si virtual substrates and single junction GaAs solar cells. Semicond. Sci. Technol. 21 (6), 775–780 (2006).

    CAS  Article  Google Scholar 

  70. 70.

    K.H. Lee, S. Bao, G.Y. Chong, Y.H. Tan, E.A. Fitzgerald, and C.S. Tan: Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer. J. Appl. Phys. 116 (10), 103506 (2014).

    Article  CAS  Google Scholar 

  71. 71.

    K.H. Lee, S. Bao, G.Y. Chong, Y.H. Tan, E.A. Fitzgerald, and C.S. Tan: Defects reduction of Ge epitaxial film in a germanium-on-insulator wafer by annealing in oxygen ambient. APL Mater. 3 (1), 016102 (2015).

    Article  CAS  Google Scholar 

  72. 72.

    K.H. Lee, S. Bao, B. Wang, C. Wang, S.F. Yoon, J. Michel, E.A. Fitzgerald, and C.S. Tan: Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer. AIP Adv. 6 (2), 025028 (2016).

    Article  CAS  Google Scholar 

  73. 73.

    F. Cai, Y. Dong, Y.H. Tan, C.S. Tan, and G. Xia: Enhanced Si–Ge interdiffusion in high phosphorus-doped germanium on silicon. Semicond. Sci. Technol. 30 (10), 105008 (2015).

    Article  CAS  Google Scholar 

  74. 74.

    K.H. Jung, T.Y. Hsieh, D.L. Kwong, H.Y. Liu, and R. Brennan: In situ doping of GexSi1−x with arsenic by rapid thermal processing chemical vapor deposition. Appl. Phys. Lett. 60 (6), 724 (1992).

    CAS  Article  Google Scholar 

  75. 75.

    Z. Huang, J. Oh, S.K. Banerjee, and J.C. Campbell: Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors. IEEE J. Quantum Electron. 43 (3), 238 (2007).

    CAS  Article  Google Scholar 

  76. 76.

    N.A. DiLello, D.K. Johnstone, and J.L. Hoyt: Characterization of dark current in Ge-on-Si photodiodes. J. Appl. Phys. 112 (5), 054506 (2012).

    Article  CAS  Google Scholar 

  77. 77.

    J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D.D. Cannon, S. Jongthammanurak, D.T. Danielson, L.C. Kimerling, J. Chen, F.O. Llday, F.X. Kartner, and J. Yasaitis: High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform. Appl. Phys. Lett. 87 (10), 103501 (2005).

    Article  CAS  Google Scholar 

  78. 78.

    J. Liu, D.D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D.T. Danielson, J. Michel, and L.C. Kimerling: Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications. Appl. Phys. Lett. 87 (1), 011110 (2005).

    Article  CAS  Google Scholar 

  79. 79.

    G. Dehlinger, S.J. Koester, J.D. Schaub, J.O. Chu, Q.C. Quyang, and A. Grill: High-speed germanium-on-SOI lateral PIN photodiodes. IEEE Photon. Technol. Lett. 16 (11), 2547 (2004).

    CAS  Article  Google Scholar 

  80. 80.

    D. Ahn, C.Y. Hong, J. Liu, W. Giziewicz, M. Beals, L.C. Kimerling, J. Michel, J. Chen, and F.Z. Kartner: High performance, waveguide integrated Ge photodetectors. Opt. Express 15 (7), 3916 (2007).

    CAS  Article  Google Scholar 

  81. 81.

    L. Vivien, J. Osmond, J-M. Fedeli, D. Marris-Morini, P. Crozat, J-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval: 42 GHz pin Ge photodetector integrated on SOI waveguide. Opt. Express 17 (8), 6252 (2009).

    CAS  Article  Google Scholar 

  82. 82.

    D. Feng, S. Liao, P. Dong, N.N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A.V. Krishnamoorthy, and M. Asghari: High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide. Appl. Phys. Lett. 95 (26), 261105 (2009).

    Article  CAS  Google Scholar 

  83. 83.

    L. Virot, L. Vivien, J-M. Fédéli, Y. Bogumilowicz, J-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan: High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications. Photonics Res. 1 (3), 140 (2013).

    Article  CAS  Google Scholar 

  84. 84.

    T. Yin, R. Cohen, M.M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M.J. Paniccia: 31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate. Opt. Express 15 (21), 13965 (2007).

    CAS  Article  Google Scholar 

  85. 85.

    L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J.M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J.M. Fédéli: Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt. Express 20 (2), 1096 (2012).

    CAS  Article  Google Scholar 

  86. 86.

    J. Wang, W.Y. Loh, K.T. Chua, H. Zang, Y.Z. Xiong, T.H. Loh, M.B. Yu, S.J. Lee, G.Q. Lo, and D.L. Kwong: Evanescent-coupled Ge p-i-n photodetectors on Si-waveguide with SEG-Ge and comparative study of lateral and vertical p-i-n configurations. IEEE Electron Device Lett. 29 (5), 445 (2008).

    Article  CAS  Google Scholar 

  87. 87.

    L. Colace, M. Balbi, G. Masini, G. Assanto, H-C. Luan, and L.C. Kimerling: Ge on Si p-i-n photodiodes operating at 10 Gbit/s. Appl. Phys. Lett. 88 (10), 101111 (2006).

    Article  CAS  Google Scholar 

  88. 88.

    D. Suh, S. Kim, J. Joo, and G. Kim: 36-GHz high-responsivity Ge photodetectors grown by RPCVD. IEEE Photon. Technol. Lett. 21 (10), 672 (2009).

    CAS  Article  Google Scholar 

  89. 89.

    L. Colace, G. Masini, G. Assanto, H. Luan, K. Wada, and L.C. Kimerling: Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates. Appl. Phys. Lett. 76 (10), 1231 (2000).

    CAS  Article  Google Scholar 

  90. 90.

    M.B.S. Klinger, M. Kaschel, M. Oehme, and E. Kasper: Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz. IEEE Photon. Technol. Lett. 21 (13), 920 (2009).

    CAS  Article  Google Scholar 

  91. 91.

    Z. Zhou, J. He, R. Wang, C. Li, and J. Yu: Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition. Opt. Commun. 283 (18), 3404 (2010).

    CAS  Article  Google Scholar 

  92. 92.

    C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang: High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection. IEEE Trans. Electron Devices 60 (3), 1183 (2013).

    CAS  Article  Google Scholar 

  93. 93.

    B. Jalali and S. Fathpour: Silicon photonics. J. Lightwave Technol. 24 (12), 4600 (2006).

    CAS  Article  Google Scholar 

  94. 94.

    J.F. Liu, X. Sun, D. Pan, X.X. Wang, L.C. Kimerling, T.L. Koch, and J. Michel: Tensile-strained n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express 15 (18), 11272 (2007).

    CAS  Article  Google Scholar 

  95. 95.

    R.A. Soref and L. Friedman: Direct gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures. Superlattices Microstruct. 14 (2), 189 (1993).

    CAS  Article  Google Scholar 

  96. 96.

    M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud: Band structure and optical gain of tensile-strained germanium based on a 30 band k·p formalism. J. Appl. Phys. 107 (1), 013710 (2010).

    Article  CAS  Google Scholar 

  97. 97.

    V. Reboud, A. Gassenq, J.M. Hartmann, J. Widiez, L. Virot, J. Aubin, K. Guilloy, S. Tardif, J.M. Fédéli, N. Pauc, A. Chelnokov, and V. Calvo: Germanium based photonic components toward a full silicon/germanium photonic platform. Prog. Cryst. Growth Charact. Mater. 63 (2), 1 (2017).

    CAS  Article  Google Scholar 

  98. 98.

    D. Nam, D.S. Sukhdeo, J-H. Kang, J. Petykiewicz, J.H. Lee, W.S. Jung, J. Vučković, M.L. Brongersma, and K.C. Saraswat: Strain-induced pseudoheterostructure nanowires confining carriers at room temperature with nanoscale-tunable band profiles. Nano Lett. 13 (7), 3118 (2013).

    CAS  Article  Google Scholar 

  99. 99.

    T. Zabel, E. Marin, R. Geiger, C. Bozon, S. Tardif, K. Guilloy, A. Gassenq, J. Escalante, Y.M. Niquet, I. Duchemin, J. Rothman, N. Pauc, F. Rieutord, V. Reboud, V. Calvo, J.M. Hartmann, J. Widiez, A. Tchelnokov, J. Faist, and H. Sigg: Highly strained direct bandgap germanium cavities for a monolithic laser on Si. Presented at the IEEE International Conference on Group IV Photonics GFP 7739082, IEEE, Shanghai, China, 2016.

    Google Scholar 

  100. 100.

    A. Gassenq, S. Tardif, K. Guilloy, I. Duchemin, N. Pauc, J.M. Hartmann, D. Rouchon, J. Widiez, Y.M. Niquet, L. Milord, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, F. Rieutord, V. Reboud, and V. Calvo: Raman-strain relations in highly strained Ge: Uniaxial 〈100〉, 〈110〉 and biaxial (001) stress. J. Appl. Phys. 121 (5), 055702 (2017).

    Article  CAS  Google Scholar 

  101. 101.

    J. Kang, M. Takenaka, and S. Takagi: Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits. Opt. Express 24 (11), 11855 (2016).

    CAS  Article  Google Scholar 

  102. 102.

    R.A. Soref, S.J. Emelett, and W.R. Buchwald: Silicon waveguided components for the long-wave infrared region. J. Opt. A: Pure Appl. Opt. 8 (10), 840 (2006).

    CAS  Article  Google Scholar 

  103. 103.

    M. Nedeljkovic, J.S. Penadés, C.J. Mitchell, A.Z. Khokhar, S. Stanković, T.D. Bucio, C.G. Littlejohns, F.Y. Gardes, and G.Z. Mashanovich: Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers. IEEE Photon. Technol. Lett. 27 (10), 1040 (2015).

    CAS  Article  Google Scholar 

  104. 104.

    A. Yalcin, K.C. Popat, J.C. Aldridge, T.A. Desai, J. Hryniewicz, N. Chbouki, B.E. Little, O. King, V. Van, and S. Chu: Optical sensing of biomolecules using microring resonator. IEEE J. Sel. Top. Quantum Electron. 12 (1), 148 (2006).

    CAS  Article  Google Scholar 

  105. 105.

    Q. Xu, D. Fattal, and R.G. Beausoleil: Silicon microring resonators with 1.5-µm radius. Opt. Express 16 (6), 4309 (2008).

    Article  Google Scholar 

  106. 106.

    Y. Vlasov and S. McNab: Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12 (8), 1622 (2004).

    Article  Google Scholar 

  107. 107.

    G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J-H. Lee, K. Raj, and J.E. Cunningham: Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. Opt. Express 20 (11), 12035 (2012).

    Article  Google Scholar 

  108. 108.

    R. Soref: Mid-infrared photonics in silicon and germanium. Nat. Photonics 4 (8), 495 (2010).

    CAS  Article  Google Scholar 

  109. 109.

    V.M. Lavchiev and B. Jakoby: Photonics in the mid-infrared: Challenges in single-chip integration and absorption sensing. IEEE J. Sel. Top. Quantum Electron. 23 (2), 1 (2017).

    Article  Google Scholar 

  110. 110.

    M. Sieger and B. Mizaikoff: Toward on-chip mid-infrared sensors. Anal. Chem. 88 (11), 5562 (2016).

    CAS  Article  Google Scholar 

  111. 111.

    M. Sieger, F. Balluff, X. Wang, S-S. Kim, L. Leidner, G. Gauglitz, and B. Mizaikoff: On-chip integrated mid-infrared GaAs/AlGaAs Mach–Zehnder interferometer. Anal. Chem. 85 (6), 3050 (2013).

    CAS  Article  Google Scholar 

  112. 112.

    Y-C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. van der Wal, J. Di Francesco, N.F. de Rooij, and H. Peter Herzig: Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip. Lab Chip 12 (17), 3020 (2012).

    CAS  Article  Google Scholar 

  113. 113.

    J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson: Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt. Express 15 (5), 2307 (2007).

    CAS  Article  Google Scholar 

  114. 114.

    J. Coates: Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry (John Wiley & Sons, 2006).

    Google Scholar 

  115. 115.

    W. Li, P. Anantha, S. Bao, K.H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C.S. Tan: Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics. Appl. Phys. Lett. 109 (24), 241101 (2016).

    Article  CAS  Google Scholar 

  116. 116.

    G. Capellini, G. Kozlowski, Y. Yamamoto, M. Lisker, C. Wenger, G. Niu, P. Zaumseil, B. Tillack, A. Ghrib, M. Kersauson, M.E. Kurdi, P. Boucaud, and T. Schroeder: Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach. J. Appl. Phys. 113 (1), 013513 (2013).

    Article  CAS  Google Scholar 

  117. 117.

    A. Ghrib, M. Kurdi, M. Prost, S. Sauvage, X. Checoury, G. Beaudoin, M. Chaigneau, R. Ossikovski, I. Sagnes, and P. Boucaud: All-around SiN stressor for high and homogeneous tensile strain in germanium microdisk cavities. Adv. Opt. Mater. 3 (3), 353 (2015).

    CAS  Article  Google Scholar 

  118. 118.

    V.R. D’Costa, C.S. Cook, A.G. Birdwell, C.L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez: Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study. Phys. Rev. B: Condens. Matter Mater. Phys. 73 (12), 125207 (2006).

    Article  CAS  Google Scholar 

  119. 119.

    R. Chen, H. Lin, Y. Huo, C. Hitzman, T.I. Kamins, and J.S. Harris: Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy. Appl. Phys. Lett. 99 (11), 181125 (2011).

    Article  CAS  Google Scholar 

  120. 120.

    J. Liu: Monolithically integrated Ge-on-Si active photonics. Photonics 1 (3), 162 (2014).

    Article  Google Scholar 

  121. 121.

    S. Wirths, D. Buca, and S. Mantl: Si–Ge–Sn alloys: From growth to applications. Prog. Cryst. Growth Charact. Mater. 62 (1), 1 (2016).

    CAS  Article  Google Scholar 

  122. 122.

    S. Wirths, R. Geiger, N.V.D. Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J.M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher: Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photon. Lett. 9, 88 (2015).

    CAS  Article  Google Scholar 

  123. 123.

    S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang: GeSn p-i-n photodetector for all telecommunication bands detection. Opt. Express 19 (7), 6400 (2011).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology’s Low Energy Electronic Systems (LEES) IRG and NRF-CRP12-2013-04. The work was also partially supported by Innovation Grant from SMART Innovation Center. Authors are grateful to the support and resources from the Silicon Technologies Center of Excellence (Si-COE). C.S. Tan is affiliated with NOVITAS (Nanoelectronics Center of Excellence) at NTU. S. Bao is supported by SMA3 Fellowship. We would like to thank Daeik Kim, Chibuzo Onwuka and Donguk Nam from Inha University for their measurement data and valuable discussion. In addition, we are thankful for the support received from the silicon photonics group, Optoelectronics Research Center at the University of Southampton.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kwang Hong Lee or Chuan Seng Tan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, K.H., Bao, S., Lin, Y. et al. Hetero-epitaxy of high quality germanium film on silicon substrate for optoelectronic integrated circuit applications. Journal of Materials Research 32, 4025–4040 (2017). https://doi.org/10.1557/jmr.2017.324

Download citation